-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
380 lines (330 loc) · 10.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os
from huggingface_hub import hf_hub_download
from pathlib import Path
import sys
# Add src directory to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src import model_loader
from src import pipeline
from src.config import Config, DeviceConfig
from transformers import CLIPTokenizer
# Create data directory if it doesn't exist
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
# Model configuration
MODEL_REPO = "stable-diffusion-v1-5/stable-diffusion-v1-5"
MODEL_FILENAME = "v1-5-pruned-emaonly.ckpt"
model_file = data_dir / MODEL_FILENAME
# Download model if it doesn't exist
if not model_file.exists():
print(f"Downloading model from {MODEL_REPO}...")
model_file = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
local_dir=data_dir,
local_dir_use_symlinks=False
)
print("Model downloaded successfully!")
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Initialize configuration
config = Config(
device=DeviceConfig(device=device),
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
)
# Load models
config.models = model_loader.load_models(str(model_file), device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def txt2img(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
# Generate image
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=None,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
def img2img(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
strength,
progress=gr.Progress(track_tqdm=True),
):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image is None:
return None, seed
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
config.diffusion.strength = strength
# Generate image
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=input_image,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
except Exception as e:
print(f"Error in img2img: {str(e)}")
gr.Warning(f"Error: {str(e)}")
return None, seed
def inpaint(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
mask_image,
strength,
progress=gr.Progress(track_tqdm=True),
):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image is None or mask_image is None:
gr.Warning("Both input image and mask are required for inpainting")
return None, seed
# Ensure mask is in the right format
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
# Update config with user settings
config.seed = seed
config.diffusion.cfg_scale = guidance_scale
config.diffusion.n_inference_steps = num_inference_steps
config.model.width = width
config.model.height = height
config.diffusion.strength = strength
# Generate image with mask
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=input_image,
mask_image=mask_image,
config=config
)
# Convert numpy array to PIL Image
image = Image.fromarray(output_image)
return image, seed
except Exception as e:
print(f"Error in inpainting: {str(e)}")
gr.Warning(f"Error: {str(e)}")
return None, seed
examples = [
"A ultra sharp photorealtici painting of a futuristic cityscape at night with neon lights and flying cars",
"A serene mountain landscape at sunset with snow-capped peaks and a clear lake reflection",
"A detailed portrait of a cyberpunk character with glowing neon implants and holographic tattoos",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
.tabs {
margin-top: 10px;
margin-bottom: 10px;
}
.disclaimer {
font-size: 0.8em;
color: #666;
margin-top: 20px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # LiteDiffusion")
with gr.Tabs(elem_classes="tabs") as tabs:
with gr.TabItem("Text-to-Image"):
txt2img_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
txt2img_run = gr.Button("Generate", variant="primary")
txt2img_result = gr.Image(label="Result")
with gr.TabItem("Image-to-Image"):
img2img_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="pil")
strength_slider = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
img2img_run = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
img2img_result = gr.Image(label="Result")
with gr.TabItem("Inpainting"):
inpaint_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
with gr.Row():
with gr.Column(scale=1):
inpaint_image = gr.Image(label="Input Image", type="pil")
inpaint_mask = gr.Image(label="Mask (White areas will be inpainted)", type="pil")
inpaint_strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
inpaint_run = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
inpaint_result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
gr.Markdown(
"By using LiteDiffusion, you agree to the terms in our [disclaimer](disclaimer.md).",
elem_classes="disclaimer"
)
# Example prompts for text to image
gr.Examples(examples=examples, inputs=[txt2img_prompt])
# Text-to-Image generation
txt2img_run.click(
fn=txt2img,
inputs=[
txt2img_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[txt2img_result, seed],
)
# Image-to-Image generation
img2img_run.click(
fn=img2img,
inputs=[
img2img_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
input_image,
strength_slider,
],
outputs=[img2img_result, seed],
)
# Inpainting
inpaint_run.click(
fn=inpaint,
inputs=[
inpaint_prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
inpaint_image,
inpaint_mask,
inpaint_strength,
],
outputs=[inpaint_result, seed],
)
if __name__ == "__main__":
demo.launch()