-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvector_util.py
262 lines (215 loc) · 9.71 KB
/
vector_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from progress.bar import Bar
def checkFormat(fileExt):
"""
Checks the format of the input name, modifies it if need be
"""
def decorator(function):
def wrapper(*args, **kwargs):
# Check if names in args or kwargs
indexNames, inputNames = None, None
try:
inputNames = kwargs['filename']
indexNames = 'dic'
except KeyError:
for i in range(len(args)):
if type(args[i]) in [list, str]: indexNames = i; inputNames = args[i]; break
if indexNames is None: raise NameError("No file as parameters")
# Add the desired file extension to the filenames
if type(inputNames) is not list: changedInput = [inputNames]
else: changedInput = inputNames[:]
changedInput = [f+fileExt if f[-len(fileExt):] != fileExt else f for f in changedInput]
if type(inputNames) is not list: changedInput = changedInput[0]
# Change the function's parameters
if indexNames == 'dic': kwargs['filename'] = changedInput
else: args = list(args[:indexNames]) + [changedInput] + list(args[indexNames+1:])
return function(*args, **kwargs)
return wrapper
return decorator
def valueToRGB(*args, **kwargs):
if "color3" in kwargs.keys():
return valueToRGB3colors(*args,**kwargs)
return valueToRGB2colors(*args, **kwargs)
def valueToRGB2colors(value, color1=(255,0,0), color2=(0,255,0), pureNorm=None, minNorm=-1, maxNorm=1):
"""
Converts a value to an RGB color, between color1 and color2
Pure colors for values of norm >= pureNorm
"""
if pureNorm is not None:
if value**2 > pureNorm**2:
value = pureNorm if value > 0 else -pureNorm
weight = value/pureNorm
return tuple(int(color1[k] * (1-weight)/2) + int(color2[k] * (1+weight)/2) for k in range(len(color1)))
value = minNorm if value <= minNorm else value
value = maxNorm if value >= maxNorm else value
weight1, weight2 = abs((maxNorm - value)/(maxNorm - minNorm)), abs((minNorm - value)/(maxNorm - minNorm))
return tuple(int(color1[k] * weight1) + int(color2[k] * weight2) for k in range(len(color1)))
def valueToRGB3colors(value, color1=(255,0,0), color2=None, color3=(0,0,255), pureNorm=None, minNorm=-1, maxNorm=1):
"""
Converts a value to an RGB color, between color1, color2 and color3
Pure colors for values of norm >= pureNorm
"""
if color2 is None:
color2 = tuple(int((color1[k]+color3[k])/2) for k in range(3))
middle = (maxNorm + minNorm) / 2
if value <= middle:
return valueToRGB2colors(value, color1, color2, pureNorm=pureNorm, minNorm=minNorm, maxNorm=middle)
else:
return valueToRGB2colors(value, color2, color3, pureNorm=pureNorm, minNorm=middle, maxNorm=maxNorm)
def invertColor(color):
"""
Inverts an RGB color
"""
return tuple((255 - p for p in color))
def getPointsChoice(init_params,num_params, minalpha, maxaplha, stepalpha, prob):
"""
# Params :
init_params : model parameters to study around (array)
num_params : the length of the parameters array (int)
minalpha : the start value for alpha parameter (float)
maxalpha : the end/highest value for alpha parameter (float)
stepalpha : the step for alpha value in the loop (float)
prob : the probability to choose each parameter dimension (float)
# Function:
Returns parameters around base_params on direction choosen by random choice of proba 'prob' on param dimensions.
Parameters starts from base_params to base_params+maxalpha on one side of the direction and
from base_params to base_params-maxaplha on the other side. The step of alpha is stepalpha.
This method gives a good but very noisy visualisation and not easy to interpret.
"""
#init_params = np.copy(base_params)
d = np.random.choice([1, 0], size=(num_params,), p=[prob, 1-prob]) #select random dimensions with proba
print("proportion: "+str(np.count_nonzero(d==1))+"/"+str(num_params))
theta_plus = []
theta_minus = []
for alpha in np.arange(minalpha, maxaplha, stepalpha):
theta_plus.append(init_params + alpha * d)
theta_minus.append(init_params - alpha * d)
return theta_plus, theta_minus #return separaterly points generated around init_params on each side (+/-)
def getPointsUniform(init_params,num_params, minalpha, maxaplha,stepalpha):
"""
# Params :
init_params : model parameters to study around (array)
num_params : the length of the parameters array (int)
minalpha : the start value for alpha parameter (float)
maxalpha : the end/highest value for alpha parameter (float)
stepalpha : the step for alpha value in the loop (float)
# Function:
Returns parameters around base_params on direction choosen by uniform random draw on param dimensions in [0,1).
Parameters starts from base_params to base_params+maxalpha on one side of the direction and
from base_params to base_params-maxaplha on the other side. The step of alpha is stepalpha.
This method gives the best visualisation.
"""
#init_params = np.copy(base_params)
d = np.random.uniform(0, 1, num_params) #select uniformly dimensions [0,1)
theta_plus = []
theta_minus = []
for alpha in np.arange(minalpha, maxaplha, stepalpha):
theta_plus.append(init_params + alpha * d)
theta_minus.append(init_params - alpha * d)
return theta_plus, theta_minus #return separaterly points generated around init_params on each side (+/-)
def getPointsDirection(init_params,num_params, minalpha, maxaplha,stepalpha, d):
"""
# Params :
init_params : model parameters to study around (array)
num_params : the length of the parameters array (int)
minalpha : the start value for alpha parameter (float)
maxalpha : the end/highest value for alpha parameter (float)
stepalpha : the step for alpha value in the loop (float)
d : pre-choosend direction
# Function:
Returns parameters around base_params on direction given in parameters.
Parameters starts from base_params to base_params+maxalpha on one side of the direction and
from base_params to base_params-maxaplha on the other side. The step of alpha is stepalpha.
This method gives an output that is comparable with other results if directions are the same.
"""
#init_params = np.copy(base_params)
theta_plus = []
theta_minus = []
for alpha in np.arange(minalpha, maxaplha, stepalpha):
theta_plus.append(init_params + alpha * d)
theta_minus.append(init_params - alpha * d)
return theta_plus, theta_minus #return separaterly points generated around init_params on each side (+/-)
def getPointsUniformCentered(init_params,num_params, minalpha, maxaplha,stepalpha):
"""
# Params :
init_params : model parameters to study around (array)
num_params : the length of the parameters array (int)
minalpha : the start value for alpha parameter (float)
maxalpha : the end/highest value for alpha parameter (float)
stepalpha : the step for alpha value in the loop (float)
# Function:
Returns parameters around base_params on direction choosen by uniform random draw on param dimensions in [-1,1].
Parameters starts from base_params to base_params+maxalpha on one side of the direction and
from base_params to base_params-maxaplha on the other side. The step of alpha is stepalpha.
This method gives bad visualisation.
"""
#init_params = np.copy(base_params)
d = np.random.uniform(-1, 1, num_params) #select uniformly dimensions in [-1,1)
theta_plus = []
theta_minus = []
for alpha in np.arange(minalpha, maxaplha, stepalpha):
theta_plus.append(init_params + alpha * d)
theta_minus.append(init_params - alpha * d)
return theta_plus, theta_minus #return separaterly points generated around init_params on each side (+/-)
def getDirectionsMuller(nb_directions,num_params):
"""
# Params :
nb_directions : number of directions to generate randomly in unit ball
num_params : dimensions of the vectors to generate (int value, only 1D vectors)
# Function:
Returns a list of vectors generated in the uni ball of 'num_params' dimensions, using Muller
"""
D = []
with Bar('Directions computed', max=nb_directions) as bar:
for _ in range(nb_directions):
u = np.random.normal(0,1,num_params)
norm = np.sum(u**2)**(0.5)
r = np.random.random()**(1.0/num_params)
x = r*u/norm
D.append(x)
bar.next()
return D
def euclidienne(x,y):
"""
# Params :
# Function:
Returns a simple euclidian distance between x and y.
"""
return np.linalg.norm(np.array(x)-np.array(y))
def order_all_by_proximity(vectors):
"""
# Params :
vectors : a list of vectors
# Function:
Returns the list of vectors ordered by inserting the vectors between their nearest neighbors
"""
ordered = []
with Bar('Ordering them between nearest neighbors', max=len(vectors)) as bar:
for vect in vectors:
if(len(ordered)==0):
ordered.append(vect)
else:
ind = compute_best_insert_place(vect, ordered)
ordered.insert(ind,vect)
bar.next()
return ordered
def compute_best_insert_place(vect, ordered_vectors):
"""
# Params :
ordered_vectors : a list of vectors ordered by inserting the vectors between their nearest neighbors
vect : a vector to insert at the best place in the ordered list of vectors
# Function:
Returns the index where 'vect' should be inserted to be between the two nearest neighbors using euclidien distance
"""
# Compute the index where the vector will be at the best place :
value_dist = euclidienne(vect, ordered_vectors[0])
dist_place = [value_dist]
for ind in range(len(ordered_vectors)-1):
value_dist = np.mean([euclidienne(vect, ordered_vectors[ind]),euclidienne(vect, ordered_vectors[ind+1])])
dist_place.append(value_dist)
value_dist = euclidienne(vect, ordered_vectors[len(ordered_vectors)-1])
dist_place.append(value_dist)
ind = np.argmin(dist_place)
return ind