-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0096.cpp
166 lines (152 loc) · 5.66 KB
/
euler-0096.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// ////////////////////////////////////////////////////////
// # Title
// Su Doku
//
// # URL
// https://projecteuler.net/problem=96
// http://euler.stephan-brumme.com/96/
//
// # Problem
// Su Doku (Japanese meaning number place) is the name given to a popular puzzle concept.
// Its origin is unclear, but credit must be attributed to Leonhard Euler who invented a similar, and much more difficult, puzzle idea called Latin Squares.
// The objective of Su Doku puzzles, however, is to replace the blanks (or zeros) in a 9 by 9 grid in such that each row, column, and 3 by 3 box contains each of the digits 1 to 9.
// Below is an example of a typical starting puzzle grid and its solution grid.
//
// || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 ||
// || 0 ++ 0 ++ 3 ++ 0 ++ 2 ++ 0 ++ 6 ++ 0 ++ 0 ||
// || 9 ++ 0 ++ 0 ++ 3 ++ 0 ++ 5 ++ 0 ++ 0 ++ 1 ||
// || 0 ++ 0 ++ 1 ++ 8 ++ 0 ++ 6 ++ 4 ++ 0 ++ 0 ||
// || 0 ++ 0 ++ 8 ++ 1 ++ 0 ++ 2 ++ 9 ++ 0 ++ 0 ||
// || 7 ++ 0 ++ 0 ++ 0 ++ 0 ++ 0 ++ 0 ++ 0 ++ 8 ||
// || 0 ++ 0 ++ 6 ++ 7 ++ 0 ++ 8 ++ 2 ++ 0 ++ 0 ||
// || 0 ++ 0 ++ 2 ++ 6 ++ 0 ++ 9 ++ 5 ++ 0 ++ 0 ||
// || 8 ++ 0 ++ 0 ++ 2 ++ 0 ++ 3 ++ 0 ++ 0 ++ 9 ||
// || 0 ++ 0 ++ 5 ++ 0 ++ 1 ++ 0 ++ 3 ++ 0 ++ 0 ||
//
// || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 ||
// || 4 ++ 8 ++ 3 ++ 9 ++ 2 ++ 1 ++ 6 ++ 5 ++ 7 ||
// || 9 ++ 6 ++ 7 ++ 3 ++ 4 ++ 5 ++ 8 ++ 2 ++ 1 ||
// || 2 ++ 5 ++ 1 ++ 8 ++ 7 ++ 6 ++ 4 ++ 9 ++ 3 ||
// || 5 ++ 4 ++ 8 ++ 1 ++ 3 ++ 2 ++ 9 ++ 7 ++ 6 ||
// || 7 ++ 2 ++ 9 ++ 5 ++ 6 ++ 4 ++ 1 ++ 3 ++ 8 ||
// || 1 ++ 3 ++ 6 ++ 7 ++ 9 ++ 8 ++ 2 ++ 4 ++ 5 ||
// || 3 ++ 7 ++ 2 ++ 6 ++ 8 ++ 9 ++ 5 ++ 1 ++ 4 ||
// || 8 ++ 1 ++ 4 ++ 2 ++ 5 ++ 3 ++ 7 ++ 6 ++ 9 ||
// || 6 ++ 9 ++ 5 ++ 4 ++ 1 ++ 7 ++ 3 ++ 8 ++ 2 ||
//
// A well constructed Su Doku puzzle has a unique solution and can be solved by logic, although it may be necessary
// to employ "guess and test" methods in order to eliminate options (there is much contested opinion over this).
// The complexity of the search determines the difficulty of the puzzle; the example above is considered easy because it can be solved by straight forward direct deduction.
//
// The 6K text file, [sudoku.txt](https://projecteuler.net/project/resources/p096_sudoku.txt) (right click and 'Save Link/Target As...'), contains fifty different Su Doku puzzles ranging in difficulty,
// but all with unique solutions (the first puzzle in the file is the example above).
//
// By solving all fifty puzzles find the sum of the 3-digit numbers found in the top left corner of each solution grid;
// for example, 483 is the 3-digit number found in the top left corner of the solution grid above.
//
// # Solved by
// Stephan Brumme
// March 2017
//
// # Algorithm
// My program uses backtracking to ''solve'' a Su Doku: it looks for the first empty cell (which contains a zero).
// Then it scans the row, column and the cell's 3x3 box to figure out which numbers could be placed in the cell (see ''available'').
// The algorithm tries all ''available'' numbers and recursively calls itself.
// If no number can be placed in the current empty cell, then the algorithm failed and has to backtrack to the previous cell (return ''false'').
// If no empty cell can be found, then the Su Doku was solved (return ''true'').
//
// To speed up the program, the board is modified in-place.
//
// # Hackerrank
// Just show the full solution of the current board.
#include <string>
#include <iostream>
typedef unsigned int Board[9][9];
const unsigned int Empty = 0;
// find the first solution and store it in board
bool solve(Board& board)
{
for (unsigned int y = 0; y < 9; y++)
for (unsigned int x = 0; x < 9; x++)
{
// already solved cell ?
if (board[x][y] != Empty)
continue;
// track which numbers could be placed in the current cell
bool available[9+1] = { false, true, true, true, true, true, true, true, true, true };
// note: available[0] is a dummy entry, the program only uses available[1..9]
// same row and column
for (unsigned int i = 0; i < 9; i++)
{
if (board[i][y] != Empty)
available[board[i][y]] = false;
if (board[x][i] != Empty)
available[board[x][i]] = false;
}
// same region (3x3 area)
unsigned int rx = (x / 3) * 3;
unsigned int ry = (y / 3) * 3;
for (unsigned int i = 0; i < 3; i++)
for (unsigned int j = 0; j < 3; j++)
if (board[i + rx][j + ry] != Empty)
available[board[i + rx][j + ry]] = false;
// try all still available numbers
for (unsigned int i = 1; i <= 9; i++)
if (available[i])
{
board[x][y] = i;
if (solve(board))
return true;
}
// all failed, restore old board
board[x][y] = Empty;
return false;
}
// solved it
return true;
}
int main()
{
//#define ORIGINAL
#ifdef ORIGINAL
unsigned int tests = 50;
unsigned int sum = 0;
#else
unsigned int tests = 1;
#endif
while (tests--)
{
#ifdef ORIGINAL
// skip labels "GRID xy"
std::string dummy;
std::cin >> dummy >> dummy;
#endif
// read board
Board board;
for (unsigned int y = 0; y < 9; y++)
{
std::string line;
std::cin >> line;
for (unsigned int x = 0; x < 9; x++)
board[x][y] = line[x] - '0';
}
// and replace all zeros (=Empty) with proper digits
solve(board);
#ifdef ORIGINAL
// the first the cells
sum += 100 * board[0][0] + 10 * board[1][0] + board[2][0];
#else
// print full solution
for (unsigned int y = 0; y < 9; y++)
{
for (unsigned int x = 0; x < 9; x++)
std::cout << board[x][y];
std::cout << std::endl;
}
#endif
}
#ifdef ORIGINAL
std::cout << sum;
#endif
return 0;
}