-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0070.cpp
178 lines (158 loc) · 5.28 KB
/
euler-0070.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// ////////////////////////////////////////////////////////
// # Title
// Totient permutation
//
// # URL
// https://projecteuler.net/problem=70
// http://euler.stephan-brumme.com/70/
//
// # Problem
// Euler's Totient function, `phi(n)` (sometimes called the phi function), is used to determine the number of positive numbers
// less than or equal to n which are relatively prime to n.
// For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, `phi(9) = 6`.
//
// The number 1 is considered to be relatively prime to every positive number, so `phi(1) = 1`.
//
// Interestingly, `phi(87109) = 79180`, and it can be seen that 87109 is a permutation of 79180.
//
// Find the value of n, `1 < n < 10^7`, for which `phi(n)` is a permutation of `n` and the ratio `dfrac{n}{phi(n)}` produces a minimum.
//
// # Solved by
// Stephan Brumme
// March 2017
//
// # Algorithm
// The function ''phi(x)'' computes `phi(x)`:
// - divide ''x'' by all prime numbers
// - count how many distinct prime numbers were divisors of ''x''
//
// The original formula for the totient is (see https://en.wikipedia.org/wiki/Euler%27s_totient_function ):
// `result = x * (1 - 1/prime1) * (1 - 1/prime2) * (1 - 1/prime3) * ...`
// e.g. if x == 10
// `result = 10 * (1 - 1/2) * (1 - 1/5) = 4`
//
// When initializing ''result = x'' then the multiplication can be reduced to a subtraction:
// whenever we find a prime factor ''p'', then ''result -= result/p''.
// For `phi(10)` we have the prime factors `2` and `5`
// `10 * (1 - 1/2) * (1 - 1/5)`
// `= (10 * (1 - 1/2)) * (1 - 1/5)`
// `= (10 - 10/2) * (1 - 1/5)` ==> ''result -= result/2''
// `= 5 * (1 - 1/5)`
// `= 5 - 5/5` ==> ''result -= result/5''
// `= 4`
//
// In this iterative algorithm, ''result'' is becoming smaller and smaller after each step.
// If it becomes obvious that the result is too small (''minQuotient < x/result = result * minQuotient < x''), then ''phi'' aborts.
// This small optimization gives a 2.5x performance boost.
//
// My ''fingerprint'' function was used in several Project Euler problems before, e.g. problem 49, problem 52, problem 62, ...
//
// # Alternative
// I bet you can severely speed up the program by incorporating some observations:
// - minimizing `n/phi(n)` means maximizing `phi(n)`
// - `phi(n)` is maximized for prime numbers
// - if i is not a prime, then `phi(n)` is still big if it contains just a few prime factors and those are close to `sqrt{n}`
#include <iostream>
#include <vector>
// precompute all primes less than sqrt(10^7)
std::vector<unsigned int> primes;
// return phi(x) if x/phi(x) <= minQuotient (else the result is undefined but > minQuotient)
unsigned int phi(unsigned int x, double minQuotient)
{
// totient function can be computed by finding all prime factors p
// and subtracting them from x
auto result = x;
auto reduced = x;
for (auto p : primes)
{
// prime factors have to be p <= sqrt
if (p*p > reduced)
break;
// not a prime factor ...
if (reduced % p != 0)
continue;
// prime factors may occur multiple times, remove them all
do
{
reduced /= p;
} while (reduced % p == 0);
// but subtract from result only once
result -= result / p;
// abort, this number can't be relevant because the quotient is already too high
if (result * minQuotient < x)
return result; // number is garbage but always >= its correct value
}
// prime number (result is still equal to x because we couldn't find any prime factors)
if (result == x)
return x - 1;
// (actually this case would be properly handled by the next if-clause, too)
// we only checked prime factors <= sqrt(x)
// there might exist one (!) prime factor > sqrt(x)
// e.g. 3 is a prime factor of 6, and 3 > sqrt(6)
if (reduced > 1)
return result - result / reduced;
else
return result;
}
// count digits, two numbers have the same fingerprint if they are permutations of each other
unsigned long long fingerprint(unsigned int x)
{
unsigned long long result = 0;
while (x > 0)
{
auto digit = x % 10;
x /= 10;
unsigned long long shift = 1;
for (unsigned int i = 0; i < digit; i++)
shift *= 10;
result += shift;
}
return result;
}
int main()
{
unsigned int last;
std::cin >> last;
// step 1: the usual prime sieve
primes.push_back(2);
for (unsigned int i = 3; i*i < last; i += 2)
{
bool isPrime = true;
// test against all prime numbers we have so far (in ascending order)
for (auto p : primes)
{
// next prime is too large to be a divisor ?
if (p*p > i)
break;
// divisible ? => not prime
if (i % p == 0)
{
isPrime = false;
break;
}
}
// yes, we have a prime number
if (isPrime)
primes.push_back(i);
}
// step 2: analyze all phi(n)
unsigned int bestNumber = 2;
double minQuotient = 999999;
for (unsigned int n = 3; n < last; n++)
{
auto phi_n = phi(n, minQuotient);
double quotient = n / double(phi_n);
// already have a better quotient ?
if (minQuotient <= quotient)
continue;
// check if phi(n) is a permutation of n
if (fingerprint(phi_n) == fingerprint(n))
{
minQuotient = quotient;
bestNumber = n;
}
}
// print result
std::cout << bestNumber << std::endl;
return 0;
}