-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0057.cpp
159 lines (143 loc) · 3.97 KB
/
euler-0057.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// ////////////////////////////////////////////////////////
// # Title
// Square root convergents
//
// # URL
// https://projecteuler.net/problem=57
// http://euler.stephan-brumme.com/57/
//
// # Problem
// It is possible to show that the square root of two can be expressed as an infinite continued fraction.
// `sqrt{2} = 1 + frac{1}{2 + frac{1}{2 + frac{1}{2 + ... }}} = 1.414213...`
//
// By expanding this for the first four iterations, we get:
//
// `1 + dfrac{1}{2} = dfrac{3}{2} = 1.5`
//
// `1 + dfrac{1}{2 + frac{1}{2}} = dfrac{7}{5} = 1.4`
//
// `1 + dfrac{1}{2 + frac{1}{2 + frac{1}{2}}} = dfrac{17}{12} = 1.41666...`
//
// `1 + dfrac{1}{2 + frac{1}{2 + frac{1}{2 + frac{1}{2}}}} = dfrac{41}{29} = 1.41379...`
//
// The next three expansions are `dfrac{99}{70}` , `dfrac{239}{169}`, and `dfrac{577}{408}`, but the eighth expansion, `dfrac{1393}{985}`,
// is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
//
// In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?
//
// # Solved by
// Stephan Brumme
// February 2017
//
// # Algorithm
// An iteration/expansion can be described as:
// `f(n+1) = 1 + dfrac{1}{2 + f(n)}`
//
// Each iteration/expansion is a fraction, let's call it `f(n) = dfrac{a(n)}{b(n)}`
// `f(n+1) = 1 + dfrac{1}{1 + frac{a(n)}{b(n)}}`
// ` = 1 + dfrac{1}{frac{b(n) + a(n)}{b(n)}}`
//
// ` = 1 + dfrac{b(n)}{b(n) + a(n)}`
//
// ` = dfrac{b(n) + a(n) + b(n)}{b(n) + a(n)}`
//
// `dfrac{a(n+1)}{b(n+1)} = dfrac{2b(n) + a(n)}{b(n) + a(n)}`
//
// so it's actually pretty easy to continuously compute numerator and denominator:
// `a(n+1) = 2b(n) + a(n)`
// `b(n+1) = b(n) + a(n)`
//
// inital values:
// `x(0) = 1 + 1/2 = 1 + 1/(1+1)`
// `a(0) = 1`
// `b(0) = 1`
//
// The ''BigNum'' was copied from problem 56. When ''MaxDigit = 10'' then each element of the array is one digit and I can compare ''a.size() > b.size()''.
//
// # Hackerrank
// I have to print each iteration's ID where the numerator has more digits than the denominator.
#include <vector>
#include <iostream>
// store single digits with lowest digits first
// e.g. 1024 is stored as { 4,2,0,1 }
// only non-negative numbers supported
struct BigNum : public std::vector<unsigned int>
{
// must be 10 for this problem: a single "cell" store one digit 0 <= digit < 10
static const unsigned int MaxDigit = 10;
// store a non-negative number
BigNum(unsigned long long x = 0)
{
do
{
push_back(x % MaxDigit);
x /= MaxDigit;
} while (x > 0);
}
// add two big numbers
BigNum operator+(const BigNum& other) const
{
auto result = *this;
// add in-place, make sure it's big enough
if (result.size() < other.size())
result.resize(other.size(), 0);
unsigned int carry = 0;
for (size_t i = 0; i < result.size(); i++)
{
carry += result[i];
if (i < other.size())
carry += other[i];
else
if (carry == 0)
return result;
if (carry < MaxDigit)
{
// no overflow
result[i] = carry;
carry = 0;
}
else
{
// yes, we have an overflow
result[i] = carry - MaxDigit;
carry = 1;
}
}
if (carry > 0)
result.push_back(carry);
return result;
}
};
#define ORIGINAL
int main()
{
unsigned int iterations = 1000;
std::cin >> iterations;
// both values have one digit initialized with 1
BigNum a = 1;
BigNum b = 1;
unsigned int count = 0;
for (unsigned int i = 0; i <= iterations; i++)
{
// different number of digits ?
if (a.size() > b.size())
{
#ifdef ORIGINAL
count++;
#else
std::cout << i << std::endl;
#endif
}
// a(n+1) = 2*b(n) + a(n)
// b(n+1) = b(n) + a(n)
auto twoB = b + b;
auto nextA = a + twoB;
auto nextB = b + a;
a = std::move(nextA);
b = std::move(nextB);
}
#ifdef ORIGINAL
std::cout << count << std::endl;
#endif
return 0;
}