-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0039.cpp
134 lines (123 loc) · 3.76 KB
/
euler-0039.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// ////////////////////////////////////////////////////////
// # Title
// Integer right triangles
//
// # URL
// https://projecteuler.net/problem=39
// http://euler.stephan-brumme.com/39/
//
// # Problem
// If `p` is the perimeter of a right angle triangle with integral length sides, `\{ a,b,c \}`, there are exactly three solutions for `p = 120`.
// `\{ 20,48,52 \}, \{ 24,45,51 \}, \{ 30,40,50 \}`
//
// For which value of `p <= 1000`, is the number of solutions maximised?
//
// # Solved by
// Stephan Brumme
// February 2017
//
// # Algorithm
// Euclid's formula generates all triplets `\{ a,b,c \}`, see https://en.wikipedia.org/wiki/Pythagorean_triple
// Assuming `a <= b <= c`:
// `a = k * (m^2 - n^2)`
// `b = k * 2mn`
// `c = k * (m^2 + n^2)`
// `perimeter = a + b + c`
//
// Integer numbers `m`, `n`, `k` produce all triplets under these conditions:
// - `m` and `n` are coprime ==> their Greatest Common Divisor is 1
// - `m` and `n` are not both odd
//
// And we can conclude:
// `a` must be positive (as well as `b` and `c`) therefore `m > n`
//
// Furthermore:
// `perimeter = k * (m^2 - n^2) + k * 2mn + k * (m^2 + n^2)`
// ` = k * (m^2 - n^2 + 2mn + m^2 + n^2)`
// ` = k * (2m^2 + 2mn)`
// ` = 2km * (m+n)`
// which gives an approximation of the upper limit: `2m^2 < MaxPerimeter`
//
// My program evaluates all combinations of `m` and `n`. For each valid pair all `k` are enumerated,
// such that the perimeter does not exceed the maximum value.
//
// A simple lookup container ''count'' stores for each perimeter the number of triangles.
//
// Following this precomputation step I perform a second step:
// extract those perimeters with more triangles than any smaller perimeter.
// The value stored at ''best[perimeter]'' equals the highest ''count[i]'' for all ''i <= perimeter''.
//
// The actual test cases are plain look-ups into ''best''.
#include <iostream>
#include <set>
#include <vector>
// greatest common divisor
unsigned int gcd(unsigned int a, unsigned int b)
{
while (a != 0)
{
unsigned int c = a;
a = b % a;
b = c;
}
return b;
}
int main()
{
const unsigned int MaxPerimeter = 5000000;
// precomputation step 1:
// count all triplets per perimeter (up to upper limit 5 * 10^6)
// [perimeter] => [number of triplets]
std::vector<unsigned int> count(MaxPerimeter + 1, 0);
// note: long long instead of int because otherwise the squares m^2, n^2, ... might overflow
for (unsigned long long m = 1; 2*m*m < MaxPerimeter; m++)
for (unsigned long long n = 1; n < m; n++)
{
// make sure all triplets a,b,c are unique
if (m % 2 == 1 && n % 2 == 1)
continue;
if (gcd(m, n) > 1)
continue;
unsigned int k = 1;
while (true)
{
// see Euclidian formula above
auto a = k * (m*m - n*n);
auto b = k * 2*m*n;
auto c = k * (m*m + n*n);
k++;
// abort if largest perimeter is exceeded
auto perimeter = a + b + c;
if (perimeter > MaxPerimeter)
break;
// ok, found a triplet
count[perimeter]++;
}
}
// precomputation step 2:
// store only best perimeters
unsigned long long bestCount = 0;
std::set<unsigned int> best;
best.insert(0); // degenerated case
for (unsigned int i = 0; i < count.size(); i++)
if (bestCount < count[i])
{
bestCount = count[i];
best.insert(i);
}
// processing input boils down to a simple lookup
unsigned int tests;
std::cin >> tests;
while (tests--)
{
unsigned int maxPerimeter;
std::cin >> maxPerimeter;
// find the perimeter with the largest count
auto i = best.upper_bound(maxPerimeter);
// we went one step too far
i--;
// print result
std::cout << *i << std::endl;
}
return 0;
}