-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathoptics.rs
325 lines (284 loc) · 10.6 KB
/
optics.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! # OPTICS Clustering
//!
//! Description goes here
//!
//! Example:
//!
//! ```
//! use smartcore::linalg::naive::dense_matrix::*;
//! use smartcore::cluster::optics::*;
//! use smartcore::math::distance::Distances;
//! use smartcore::algorithm::neighbour::KNNAlgorithmName;
//! use smartcore::dataset::generator;
//!
//! // Generate three blobs
//! let blobs = generator::make_blobs(100, 2, 3);
//! let x = DenseMatrix::from_vec(blobs.num_samples, blobs.num_features, &blobs.data);
//! // Fit the algorithm and predict cluster labels
//! let labels = OPTICS::fit(&x, OPTICSParameters::default().with_eps(3.0)).
//! and_then(|optics| optics.predict(&x));
//!
//! println!("{:?}", labels);
//! ```
//!
//! ## References:
//!
use std::fmt::Debug;
use std::iter::Sum;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::algorithm::neighbour::{KNNAlgorithm, KNNAlgorithmName};
use crate::api::{Predictor, UnsupervisedEstimator};
use crate::error::Failed;
use crate::linalg::{row_iter, Matrix};
use crate::math::distance::euclidian::Euclidian;
use crate::math::distance::{Distance, Distances};
use crate::math::num::RealNumber;
use crate::tree::decision_tree_classifier::which_max;
/// OPTICS clustering algorithm
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct OPTICS<T: RealNumber, D: Distance<Vec<T>, T>> {
cluster_labels: Vec<i16>,
num_classes: usize,
knn_algorithm: KNNAlgorithm<T, D>,
eps: T,
}
#[derive(Debug, Clone)]
/// DBSCAN clustering algorithm parameters
pub struct OPTICSParameters<T: RealNumber, D: Distance<Vec<T>, T>> {
/// a function that defines a distance between each pair of point in training data.
/// This function should extend [`Distance`](../../math/distance/trait.Distance.html) trait.
/// See [`Distances`](../../math/distance/struct.Distances.html) for a list of available functions.
pub distance: D,
/// The number of samples (or total weight) in a neighborhood for a point to be considered as a core point.
pub min_samples: usize,
/// The maximum distance between two samples for one to be considered as in the neighborhood of the other.
pub eps: T,
/// KNN algorithm to use.
pub algorithm: KNNAlgorithmName,
}
impl<T: RealNumber, D: Distance<Vec<T>, T>> OPTICSParameters<T, D> {
/// a function that defines a distance between each pair of point in training data.
/// This function should extend [`Distance`](../../math/distance/trait.Distance.html) trait.
/// See [`Distances`](../../math/distance/struct.Distances.html) for a list of available functions.
pub fn with_distance<DD: Distance<Vec<T>, T>>(self, distance: DD) -> OPTICSParameters<T, DD> {
OPTICSParameters {
distance,
min_samples: self.min_samples,
eps: self.eps,
algorithm: self.algorithm,
}
}
/// The number of samples (or total weight) in a neighborhood for a point to be considered as a core point.
pub fn with_min_samples(mut self, min_samples: usize) -> Self {
self.min_samples = min_samples;
self
}
/// The maximum distance between two samples for one to be considered as in the neighborhood of the other.
pub fn with_eps(mut self, eps: T) -> Self {
self.eps = eps;
self
}
/// KNN algorithm to use.
pub fn with_algorithm(mut self, algorithm: KNNAlgorithmName) -> Self {
self.algorithm = algorithm;
self
}
}
impl<T: RealNumber, D: Distance<Vec<T>, T>> PartialEq for OPTICS<T, D> {
fn eq(&self, other: &Self) -> bool {
self.cluster_labels.len() == other.cluster_labels.len()
&& self.num_classes == other.num_classes
&& self.eps == other.eps
&& self.cluster_labels == other.cluster_labels
}
}
impl<T: RealNumber> Default for OPTICSParameters<T, Euclidian> {
fn default() -> Self {
OPTICSParameters {
distance: Distances::euclidian(),
min_samples: 5,
eps: T::half(),
algorithm: KNNAlgorithmName::CoverTree,
}
}
}
impl<T: RealNumber + Sum, M: Matrix<T>, D: Distance<Vec<T>, T>>
UnsupervisedEstimator<M, OPTICSParameters<T, D>> for OPTICS<T, D>
{
fn fit(x: &M, parameters: OPTICSParameters<T, D>) -> Result<Self, Failed> {
OPTICS::fit(x, parameters)
}
}
impl<T: RealNumber, M: Matrix<T>, D: Distance<Vec<T>, T>> Predictor<M, M::RowVector>
for OPTICS<T, D>
{
fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
self.predict(x)
}
}
impl<T: RealNumber + Sum, D: Distance<Vec<T>, T>> OPTICS<T, D> {
/// Fit algorithm to _NxM_ matrix where _N_ is number of samples and _M_ is number of features.
/// * `data` - training instances to cluster
/// * `k` - number of clusters
/// * `parameters` - cluster parameters
pub fn fit<M: Matrix<T>>(
x: &M,
parameters: OPTICSParameters<T, D>,
) -> Result<OPTICS<T, D>, Failed> {
if parameters.min_samples < 1 {
return Err(Failed::fit(&"Invalid minPts".to_string()));
}
if parameters.eps <= T::zero() {
return Err(Failed::fit(&"Invalid radius: ".to_string()));
}
let mut k = 0;
let queued = -2;
let outlier = -1;
let undefined = -3;
let n = x.shape().0;
let mut y = vec![undefined; n];
let algo = parameters
.algorithm
.fit(row_iter(x).collect(), parameters.distance)?;
for (i, e) in row_iter(x).enumerate() {
if y[i] == undefined {
let mut neighbors = algo.find_radius(&e, parameters.eps)?;
if neighbors.len() < parameters.min_samples {
y[i] = outlier;
} else {
y[i] = k;
for j in 0..neighbors.len() {
if y[neighbors[j].0] == undefined {
y[neighbors[j].0] = queued;
}
}
while !neighbors.is_empty() {
let neighbor = neighbors.pop().unwrap();
let index = neighbor.0;
if y[index] == outlier {
y[index] = k;
}
if y[index] == undefined || y[index] == queued {
y[index] = k;
let secondary_neighbors =
algo.find_radius(neighbor.2, parameters.eps)?;
if secondary_neighbors.len() >= parameters.min_samples {
for j in 0..secondary_neighbors.len() {
let label = y[secondary_neighbors[j].0];
if label == undefined {
y[secondary_neighbors[j].0] = queued;
}
if label == undefined || label == outlier {
neighbors.push(secondary_neighbors[j]);
}
}
}
}
}
k += 1;
}
}
}
Ok(OPTICS {
cluster_labels: y,
num_classes: k as usize,
knn_algorithm: algo,
eps: parameters.eps,
})
}
/// Predict clusters for `x`
/// * `x` - matrix with new data to transform of size _KxM_ , where _K_ is number of new samples and _M_ is number of features.
pub fn predict<M: Matrix<T>>(&self, x: &M) -> Result<M::RowVector, Failed> {
let (n, m) = x.shape();
let mut result = M::zeros(1, n);
let mut row = vec![T::zero(); m];
for i in 0..n {
x.copy_row_as_vec(i, &mut row);
let neighbors = self.knn_algorithm.find_radius(&row, self.eps)?;
let mut label = vec![0usize; self.num_classes + 1];
for neighbor in neighbors {
let yi = self.cluster_labels[neighbor.0];
if yi < 0 {
label[self.num_classes] += 1;
} else {
label[yi as usize] += 1;
}
}
let class = which_max(&label);
if class != self.num_classes {
result.set(0, i, T::from(class).unwrap());
} else {
result.set(0, i, -T::one());
}
}
Ok(result.to_row_vector())
}
fn compute_optics_graph(&self) {}
fn compute_core_distances(&self) {}
fn set_reach_dist(&self) {}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::linalg::naive::dense_matrix::DenseMatrix;
#[cfg(feature = "serde")]
use crate::math::distance::euclidian::Euclidian;
#[test]
fn fit_predict_optics() {
let x = DenseMatrix::from_2d_array(&[
&[1.0, 2.0],
&[1.1, 2.1],
&[0.9, 1.9],
&[1.2, 2.2],
&[0.8, 1.8],
&[2.0, 1.0],
&[2.1, 1.1],
&[1.9, 0.9],
&[2.2, 1.2],
&[1.8, 0.8],
&[3.0, 5.0],
]);
let expected_labels = vec![0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0];
let optics = OPTICS::fit(
&x,
OPTICSParameters::default()
.with_eps(0.5)
.with_min_samples(2),
)
.unwrap();
let predicted_labels = optics.predict(&x).unwrap();
assert_eq!(expected_labels, predicted_labels);
}
#[test]
#[cfg(feature = "serde")]
fn serde() {
let x = DenseMatrix::from_2d_array(&[
&[5.1, 3.5, 1.4, 0.2],
&[4.9, 3.0, 1.4, 0.2],
&[4.7, 3.2, 1.3, 0.2],
&[4.6, 3.1, 1.5, 0.2],
&[5.0, 3.6, 1.4, 0.2],
&[5.4, 3.9, 1.7, 0.4],
&[4.6, 3.4, 1.4, 0.3],
&[5.0, 3.4, 1.5, 0.2],
&[4.4, 2.9, 1.4, 0.2],
&[4.9, 3.1, 1.5, 0.1],
&[7.0, 3.2, 4.7, 1.4],
&[6.4, 3.2, 4.5, 1.5],
&[6.9, 3.1, 4.9, 1.5],
&[5.5, 2.3, 4.0, 1.3],
&[6.5, 2.8, 4.6, 1.5],
&[5.7, 2.8, 4.5, 1.3],
&[6.3, 3.3, 4.7, 1.6],
&[4.9, 2.4, 3.3, 1.0],
&[6.6, 2.9, 4.6, 1.3],
&[5.2, 2.7, 3.9, 1.4],
]);
let optics = OPTICS::fit(&x, Default::default()).unwrap();
let deserialized_optics: OPTICS<f64, Euclidian> =
serde_json::from_str(&serde_json::to_string(&optics).unwrap()).unwrap();
assert_eq!(optics, deserialized_optics);
}
}