-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathml_frontend.py
104 lines (91 loc) · 3.7 KB
/
ml_frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import streamlit as st
# import the necessary packages for image recognition
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications import InceptionV3
from tensorflow.keras.applications import Xception # TensorFlow ONLY
from tensorflow.keras.applications import VGG16
from tensorflow.keras.applications import VGG19
from tensorflow.keras.applications import imagenet_utils
from tensorflow.keras.applications.inception_v3 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image import load_img
import numpy as np
import cv2
from PIL import Image
from io import BytesIO
import pandas as pd
import urllib
# set page layout
st.set_page_config(
page_title="Image Classification App",
page_icon="✨",
layout="wide",
initial_sidebar_state="expanded",
)
st.title("Image Classification")
st.sidebar.subheader("Input")
models_list = ["VGG16", "VGG19", "Inception", "Xception", "ResNet"]
network = st.sidebar.selectbox("Select the Model", models_list)
# define a dictionary that maps model names to their classes
# inside Keras
MODELS = {
"VGG16": VGG16,
"VGG19": VGG19,
"Inception": InceptionV3,
"Xception": Xception, # TensorFlow ONLY
"ResNet": ResNet50,
}
# component to upload images
uploaded_file = st.sidebar.file_uploader(
"Choose an image to classify", type=["jpg", "jpeg", "png"]
)
# component for toggling code
show_code = st.sidebar.checkbox("Show Code")
if uploaded_file:
bytes_data = uploaded_file.read()
# initialize the input image shape (224x224 pixels) along with
# the pre-processing function (this might need to be changed
# based on which model we use to classify our image)
inputShape = (224, 224)
preprocess = imagenet_utils.preprocess_input
# if we are using the InceptionV3 or Xception networks, then we
# need to set the input shape to (299x299) [rather than (224x224)]
# and use a different image pre-processing function
if network in ("Inception", "Xception"):
inputShape = (299, 299)
preprocess = preprocess_input
Network = MODELS[network]
model = Network(weights="imagenet")
# load the input image using PIL image utilities while ensuring
# the image is resized to `inputShape`, the required input dimensions
# for the ImageNet pre-trained network
image = Image.open(BytesIO(bytes_data))
image = image.convert("RGB")
image = image.resize(inputShape)
image = img_to_array(image)
# our input image is now represented as a NumPy array of shape
# (inputShape[0], inputShape[1], 3) however we need to expand the
# dimension by making the shape (1, inputShape[0], inputShape[1], 3)
# so we can pass it through the network
image = np.expand_dims(image, axis=0)
# pre-process the image using the appropriate function based on the
# model that has been loaded (i.e., mean subtraction, scaling, etc.)
image = preprocess(image)
preds = model.predict(image)
predictions = imagenet_utils.decode_predictions(preds)
imagenetID, label, prob = predictions[0][0]
st.image(bytes_data, caption=[f"{label} {prob*100:.2f}"])
st.subheader(f"Top Predictions from {network}")
st.dataframe(
pd.DataFrame(
predictions[0], columns=["Network", "Classification", "Confidence"]
)
)
# Download a single file and make its content available as a string.
@st.cache(show_spinner=False)
def get_file_content_as_string(path):
url = "https://raw.githubusercontent.com/nithishr/streamlit-ml-demo/main/" + path
response = urllib.request.urlopen(url)
return response.read().decode("utf-8")
if show_code:
st.code(get_file_content_as_string("ml_frontend.py"))