-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsupervised.py
714 lines (629 loc) · 32.9 KB
/
supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.tensorboard import SummaryWriter
import torch_geometric.nn as gnn
from util import *
def load_data(args, path):
data = np.load(path)
xs = VRFullProblem.process_node_counts(data['xs'], args.ptype, use_count=args.use_count_feature)
ts = data['ts']
n_routes = data['n_routes']
routes = data['routes']
route_neighbors = data['route_neighbors']
unique_masks = data['unique_masks']
labels = data['labels']
max_n_routes = n_routes.max()
ts = ts[:, :max_n_routes]
_, n_nodes, d_node = xs.shape
d_route = ts.shape[-1]
return Namespace(
# dimensions
N=len(n_routes), n_nodes=n_nodes, d_node=d_node, d_route=d_route,
max_n_routes=max_n_routes,
# matrices
xs=xs, ts=ts,
n_routes=n_routes,
routes=np.pad(routes, [(0, 0), (1, 0)])[:, :n_nodes + max_n_routes],
route_neighbors=route_neighbors[:, :max_n_routes],
labels=labels[:, :max_n_routes],
unique_masks=unique_masks[:, :max_n_routes],
)
def load_subproblem_data(path):
data = np.load(path)
xs, offsets, node_idxs, n_subp_nodes, lkh_dists, prev_dists = data['xs'], data['offsets'], data['subp_node_idxs'], data['n_subp_nodes'], data['lkh_dists'], data['prev_dists']
node_idxs = np.split(node_idxs, np.cumsum(n_subp_nodes[:-1]))
return Namespace(
N=len(n_subp_nodes), d_node=xs.shape[-1],
xs=xs, offsets=offsets, node_idxs=pad_each(node_idxs), n_subp_nodes=n_subp_nodes, lkh_dists=lkh_dists, prev_dists=prev_dists
)
def load_subproblem_statistics(path):
npz = np.load(path)
data = Namespace({k: npz[k] for k in npz.files})
data.N = len(data.statistics)
return data
def stack_froms_tos(froms, tos, inverse=False, both=False):
if inverse:
froms, tos = tos, froms
pairs = np.stack([froms, tos], axis=-2)
if both:
return np.concatenate([pairs, np.stack([tos, froms], axis=-2)], axis=-1)
return pairs
def build_edge_neighbors(neighbors, inverse=False, both=False):
n_batch, n_nodes, n_neighbors = neighbors.shape
froms = np.tile(np.repeat(np.arange(n_nodes), n_neighbors), (n_batch, 1))
tos = neighbors.reshape(n_batch, -1)
return stack_froms_tos(froms, tos, inverse, both)
def build_edge_routes(routes, inverse=False, both=False):
return stack_froms_tos(routes[:, :-1], routes[:, 1:], inverse, both)
def build_edge_agent2route(routes, inverse=False, both=False):
is_depot = routes == 0
tos = np.cumsum(is_depot, axis=1) - is_depot
return stack_froms_tos(routes, tos, inverse, both)
def build_edge_cluster2route(routes, route_neighbors, inverse=False, both=False):
n_batch, max_n_routes, _ = route_neighbors.shape
routes = [np.array(unpack_routes(rs), dtype=object) for rs in routes]
nodes = [[np.concatenate(rs[rns_i]) for rns_i in rns] for rs, rns in zip(routes, route_neighbors)]
n_nodes = [[len(ns_i) for ns_i in ns] for ns in nodes]
nodes = [np.concatenate(ns) for ns in nodes]
max_n_nodes = max(len(ns) for ns in nodes)
froms = np.array([pad_to(ns, max_n_nodes) for ns in nodes])
tos = np.array([pad_to(np.repeat(np.arange(max_n_routes), nns), max_n_nodes, constant_values=max_n_routes) for nns in n_nodes])
return stack_froms_tos(froms, tos, inverse, both)
def batch_edges(e, inc,
no_from_zeros=False, no_to_zeros=False,
max_froms=None, max_tos=None,
lengths=None
):
# Batch and increment the edges
n_batch, two, n_e = e.shape
inc = np.arange(n_batch).reshape(-1, 1, 1) * np.reshape(inc, (1, -1, 1))
e_inc = np.transpose(e + inc, axes=(1, 0, 2)).reshape(2, -1)
need_from_to_zeros = no_from_zeros or no_to_zeros
need_from_to_e = max_froms is not None or max_tos is not None
if need_from_to_zeros or need_from_to_e or lengths is not None:
mask = np.ones(n_batch * n_e, dtype=np.bool)
if need_from_to_zeros:
from_zeros, to_zeros = np.transpose(e == 0, axes=(1, 0, 2)).reshape(2, -1)
if no_from_zeros:
mask[from_zeros] = False
if no_to_zeros:
mask[to_zeros] = False
if need_from_to_e:
froms, tos = e[:, 0], e[:, 1]
if max_froms is not None:
mask[(froms >= max_froms.reshape(n_batch, 1)).reshape(-1)] = False
if max_tos is not None:
mask[(tos >= max_tos.reshape(n_batch, 1)).reshape(-1)] = False
if lengths is not None:
tails = np.tile(np.arange(n_e), (n_batch, 1)) >= lengths.reshape(n_batch, 1)
mask[tails.reshape(-1)] = False
e_inc = e_inc[:, mask]
return e_inc
def to_tensor(x, device='cpu'):
if x is None: return None
dtype = torch.long if np.issubdtype(x.dtype, np.integer) else torch.float32 if np.issubdtype(x.dtype, np.floating) else None
return torch.tensor(x, dtype=dtype, device=device)
def get_prepare(args, d=None, rotate=False, flip=False, perturb_node=False, perturb_route=False):
def prep_tensors(b):
arrays = dict(x=b.xs, t=b.ts, unique_mask=b.unique_masks, labels=b.get('labels'),
e_xct=batch_edges(build_edge_cluster2route(b.routes, b.route_neighbors), inc_xt, max_tos=b.n_routes), # routes[:, 1:] remove the leading 0
e_t=batch_edges(build_edge_neighbors(b.route_neighbors, inverse=True), inc_t, max_froms=b.n_routes, max_tos=b.n_routes),
)
b_t = Namespace((k, to_tensor(v, device=args.device)) for k, v in arrays.items())
b_t.x, b_t.t = VRFullProblem.transform_features(b_t.x, b_t.t, rotate=rotate, flip=flip, perturb_node=perturb_node, perturb_route=perturb_route)
return b_t
if d is None: # Generation time
inc_xt = inc_x, inc_t = [0, 0]
return prep_tensors
else: # Training and evaluation time
inc_xt = inc_x, inc_t = [d.n_nodes, d.max_n_routes]
keys = ['xs', 'ts', 'n_routes', 'routes', 'route_neighbors', 'unique_masks', 'labels']
return lambda idxs: prep_tensors(Namespace((k, d[k][idxs]) for k in keys))
def get_prepare_subproblem(args, d=None, rotate=False, flip=False, perturb_node=False, perturb_route=False):
def prep_batch(b):
b.labels = b.get('lkh_dists', None)
if args.fit_statistics:
b.x = b.statistics
else:
b.x = b.xs[b.offsets.reshape(-1, 1) + b.node_idxs[:, :b.n_subp_nodes.max()]]
b_t = Namespace((k, to_tensor(b[k], device=args.device)) for k in model_keys)
if not args.fit_statistics:
b_t.x, _ = VRFullProblem.transform_features(b_t.x, None, rotate=rotate, flip=flip, perturb_node=perturb_node)
return b_t
model_keys = ['x', 'labels'] if args.fit_statistics else ['x', 'n_subp_nodes', 'labels', 'prev_dists']
if d is None: # Generation time
return prep_batch
else: # Training and evaluation time
if args.fit_statistics:
return lambda idxs: prep_batch(Namespace((k, d[k][idxs]) for k in ['statistics', 'lkh_dists']))
return lambda idxs: prep_batch(Namespace(((k, d[k][idxs]) for k in ['offsets', 'node_idxs', 'n_subp_nodes', 'lkh_dists', 'prev_dists']), xs=d.xs))
def restore(args, net, opt=None):
if args.step is None:
models = list(args.model_save_dir.glob('*.pth'))
if len(models) == 0:
print('No model checkpoints found')
return None
step, load_path = max((int(p.stem), p) for p in models) # Load the max step
else:
step, load_path = args.step, args.model_save_dir / f'{args.step}.pth'
ckpt = torch.load(load_path, map_location=args.device)
net.load_state_dict(ckpt['net'])
if opt is not None:
opt.load_state_dict(ckpt['opt'])
print(f'Loaded network{"" if opt is None else " and optimizer"} from {load_path}')
return ckpt['step']
class Block(nn.Module):
def __init__(self, args, d_hidden):
super(Block, self).__init__()
Mod = getattr(gnn, args.gnn_module)
if Mod == gnn.TransformerConv:
Mod = lambda d_in, d_out: gnn.TransformerConv(d_in, d_out, heads=args.transformer_heads, concat=False)
elif Mod == gnn.GINConv:
Mod = lambda d_in, d_out: gnn.GINConv(nn.Sequential(
nn.Linear(d_in, d_out),
nn.ReLU(inplace=True),
nn.Linear(d_out, d_out),
))
elif Mod == gnn.PNAConv:
Mod = lambda d_in, d_out: gnn.PNAConv(d_in, d_out, ['mean', 'min', 'max', 'std'], scalers=['linear'], deg=torch.tensor(1, device='cuda:0'))
self.gat_tt = Mod(d_hidden, d_hidden)
self.gat_xct = Mod(d_hidden, d_hidden)
self.out = nn.Sequential(
nn.Linear(d_hidden, d_hidden),
nn.ReLU(inplace=True),
nn.LayerNorm(d_hidden) if args.use_layer_norm else nn.Identity()
)
self.fc_x = nn.Sequential(
nn.Linear(d_hidden, d_hidden),
nn.ReLU(),
nn.Linear(d_hidden, d_hidden),
) if args.use_x_fc else lambda x: 0
def forward(self, x, t, e_t, e_xct):
t = (t + self.gat_tt(t, e_t) + self.gat_xct((x, t), e_xct)).relu()
return x + self.fc_x(x), t + self.out(t)
class Network(nn.Module):
def __init__(self, args, d):
super(Network, self).__init__()
self.args = args
self.d_hidden = d_hidden = args.d_hidden
if args.normalize_features:
xs = d.xs.reshape(-1, d.d_node).astype(np.float32)
ts = d.ts.reshape(-1, d.d_route)
ts = ts[(ts != 0).any(axis=1)].astype(np.float32)
d.xs_mean, d.xs_std = xs.mean(axis=0), xs.std(axis=0)
d.ts_mean, d.ts_std = ts.mean(axis=0), ts.std(axis=0)
for name in 'xs_mean', 'xs_std', 'ts_mean', 'ts_std':
size = d.d_node if name.startswith('xs') else d.d_route
self.register_buffer(name, torch.tensor(d.get(name, np.zeros(size))))
self.fc_x = nn.Linear(d.d_node, d_hidden)
self.fc_t = nn.Linear(d.d_route, d_hidden)
self.blocks = nn.ModuleList(Block(args, d_hidden) for _ in range(args.n_layers))
self.fc_out = nn.Linear(d_hidden, 1)
def forward(self, d):
"""
Contents of d:
x: shape (n_batch, n_nodes, d_node)
t: shape (n_batch, max_n_routes, d_route)
e_n, e_r, e_xct, e_xt, e_t: shape (2, num_edges)
labels: shape (n_batch, max_n_routes)
"""
args = self.args
x, t, e_t, e_xct, unique_mask, labels = d.x, d.t, d.e_t, d.e_xct, d.unique_mask, d.get('labels')
n_batch, n_nodes, d_node = x.shape
_, max_n_routes, d_route = t.shape
x = x.view(-1, d_node)
t = t.view(-1, d_route)
if args.normalize_features:
x = (x - self.xs_mean) / self.xs_std
t = (t - self.ts_mean) / self.ts_std
x = self.fc_x(x).relu()
t = self.fc_t(t).relu()
for block in self.blocks:
x, t = block(x, t, e_t, e_xct)
scores = self.fc_out(t.view((n_batch, max_n_routes, self.d_hidden))).squeeze(-1)
# If provided, negative labels indicate improvements in distance by the LKH action, positive labels indicate worse changes
if args.loss.startswith('MSE'):
if labels is None:
scores[~unique_mask] = -np.inf
return scores # Predicted improvement in distance
labels = -labels # Flip the labels so that positive is good
if args.loss == 'MSE_clip':
labels[labels < 0] = 0
scores[(scores < 0) & (labels == 0)] = 0
loss = ((scores - labels) ** 2).mean()
else: # Softmax cross entropy (CE) loss
scores[~unique_mask] = -np.inf
logps = scores.log_softmax(dim=-1)
if labels is None:
return logps.exp()
labels[~unique_mask] = np.inf
labels_logps = (-labels / args.temperature).log_softmax(dim=-1)
loss = (labels_logps.exp() * (labels_logps - logps))[unique_mask].sum() / n_batch # KL loss
return loss
class SubproblemNetwork(nn.Module):
def __init__(self, args, d):
super(SubproblemNetwork, self).__init__()
self.args = args
self.d_hidden = d_hidden = args.d_hidden
self.register_buffer('mean_lkh_dist', torch.tensor(d.lkh_dists.mean()))
if args.fc_only:
self.fc_in = nn.Sequential(
nn.Linear(d.d_node + args.use_prev_dist_feature, d_hidden),
getattr(nn, args.activation)(),
nn.Linear(d_hidden, d_hidden),
)
self.fc_out = nn.Sequential(
getattr(nn, args.activation)(),
nn.Linear(d_hidden, d_hidden),
getattr(nn, args.activation)(),
nn.Linear(d_hidden, 1),
)
else:
self.fc = nn.Linear(d.d_node + args.use_prev_dist_feature, d_hidden)
layer = nn.TransformerEncoderLayer(d_model=d_hidden, nhead=args.transformer_heads, dim_feedforward=d_hidden * 4, dropout=args.dropout)
self.layers = nn.TransformerEncoder(layer, num_layers=args.n_layers)
self.fc_out = nn.Linear(d_hidden, 1)
def forward(self, d):
"""
Contents of d:
x: shape (n_batch, max_n_subp_nodes, d_node)
n_subp_nodes: shape (n_batch,)
labels: shape (n_batch,)
"""
args = self.args
x, n_subp_nodes, prev_dists, labels = d.x, d.n_subp_nodes, d.prev_dists, d.get('labels')
n_batch, max_n_subp_nodes, _ = x.shape
mask = torch.arange(max_n_subp_nodes, device=x.device).expand(n_batch, max_n_subp_nodes) >= n_subp_nodes.unsqueeze(1) # (n_batch, max_n_subp_nodes)
if args.use_prev_dist_feature:
x = torch.cat((x, prev_dists.view(n_batch, 1, 1).expand(n_batch, max_n_subp_nodes, 1)), dim=2)
if args.fc_only:
x = self.fc_in(x).sum(dim=1) / n_subp_nodes.reshape(-1, 1)
preds = self.fc_out(x).flatten() + self.mean_lkh_dist # (n_batch,)
else:
x = self.fc(x)
x = self.layers(x.transpose(0, 1), src_key_padding_mask=mask) # Transformer takes in (max_n_subp_nodes, n_batch, d_node)
outs = self.fc_out(x).squeeze(-1) # (max_n_subp_nodes, n_batch)
outs[mask.T] = 0
preds = outs.sum(dim=0) / n_subp_nodes + self.mean_lkh_dist # (n_batch,)
if labels is None:
return preds # Predicted distance
if args.loss.endswith('clip'):
clipped = labels >= prev_dists
labels[clipped] = prev_dists[clipped]
clipped = (preds > prev_dists) & clipped
preds[clipped] = prev_dists[clipped]
if args.loss.startswith('MSE'):
return F.mse_loss(preds, labels)
if args.loss.startswith('MAE'):
return F.l1_loss(preds, labels)
return F.smooth_l1_loss(preds, labels, beta=1.0)
class FCNetwork(nn.Module):
def __init__(self, args, d):
super(FCNetwork, self).__init__()
self.args = args
self.register_buffer('mean_lkh_dist', torch.tensor(d.lkh_dists.mean()))
fc = []
in_size = d.statistics.shape[1]
for i in range(args.n_layers):
is_last = i < args.n_layers - 1
out_size = args.d_hidden if is_last else 1
fc.append(nn.Linear(in_size, out_size))
not is_last and fc.append(getattr(nn, args.activation)())
in_size = out_size
self.fc = nn.Sequential(*fc)
def forward(self, d):
"""
Contents of d:
x: shape (n_batch, n_statistics)
labels: shape (n_batch,)
"""
preds = self.fc(d.x).flatten() + self.mean_lkh_dist # (n_batch,)
labels = d.labels
if labels is None:
return preds # Predicted distance
if args.loss.endswith('clip'):
clipped = labels >= prev_dists
labels[clipped] = prev_dists[clipped]
clipped = (preds > prev_dists) & clipped
preds[clipped] = prev_dists[clipped]
if args.loss.startswith('MSE'):
return F.mse_loss(preds, labels)
if args.loss.startswith('MAE'):
return F.l1_loss(preds, labels)
return F.smooth_l1_loss(preds, labels, beta=1.0)
def train(args, d, d_eval, d_generate):
start_time = time()
writer = SummaryWriter(log_dir=args.train_dir, flush_secs=10)
net = (FCNetwork if args.fit_statistics else SubproblemNetwork if args.fit_subproblem else Network)(args, d).to(args.device)
opt = Adam(net.parameters(), lr=args.lr)
start_step = restore(args, net, opt=opt)
scheduler = CosineAnnealingLR(opt, args.n_steps, last_epoch=-1 if start_step is None else start_step)
start_step = start_step or 0
prep = (get_prepare_subproblem if args.fit_subproblem else get_prepare)(args, d, rotate=args.augment_rotate, flip=args.augment_flip, perturb_node=args.augment_perturb_node, perturb_route=args.augment_perturb_route)
def log(text, **kwargs):
print(f'Step {step}: {text}', flush=True)
[writer.add_scalar(k, v, global_step=step, walltime=time() - start_time) for k, v in kwargs.items()]
for step in range(start_step, args.n_steps + 1):
if step % args.n_step_save == 0 or step == args.n_steps:
args.model_save_dir.mkdir(exist_ok=True)
ckpt = dict(step=step, net=net.state_dict(), opt=opt.state_dict())
torch.save(ckpt, args.model_save_dir / f'{step}.pth')
if step % args.n_step_eval == 0:
evaluate(args, d_eval, net, log)
if step % args.n_step_generate == 0 and (step > 0 or args.generate_step_zero):
generate(args, d_generate, net, step)
if step == args.n_steps: break
net.train()
loss = net(prep(np.random.choice(d.N, size=args.n_batch)))
opt.zero_grad()
loss.backward()
opt.step()
loss = loss.item()
lr = scheduler._last_lr[0]
log(f'loss={loss:.4f} lr={lr:.4f}', loss=loss, lr=lr)
scheduler.step()
writer.close()
def train_sklearn(args, d, d_eval, d_generate):
assert args.fit_statistics
import sklearn
import joblib
start = time()
skargs = Namespace(args.sklearn_parameters)
if skargs.model == 'RandomForestRegressor':
import sklearn.ensemble
model = sklearn.ensemble.RandomForestRegressor(n_estimators=skargs.get('n_estimators', 100), min_samples_split=skargs.get('min_samples_split', 2), max_features=skargs.get('max_features', 'auto'), n_jobs=args.n_cpus)
elif skargs.model == 'ElasticNet':
model = sklearn.linear_model.ElasticNet(alpha=skargs.get('alpha', 1), l1_ratio=skargs.get('l1_ratio', 0.5))
elif skargs.model == 'MLPRegressor':
import sklearn.neural_network
model = sklearn.neural_network.MLPRegressor(hidden_layer_sizes=tuple(skargs.get('hidden_layer_sizes', (100,))), activation=skargs.get('activation', 'relu'), alpha=skargs.get('alpha', 0.0001))
model.fit(d.statistics, d.lkh_dists)
fit_time = time() - start
pred = model.predict(d.statistics)
train_mse = ((pred - d.lkh_dists) ** 2).mean()
pred = model.predict(d_eval.statistics)
np.save(args.train_dir / 'predictions.npy', pred)
eval_mse = ((pred - d_eval.lkh_dists) ** 2).mean()
print(f'Train MSE: {train_mse}')
print(f'Eval MSE: {eval_mse}')
result = {'fit_time': fit_time, 'train_mse': train_mse, 'evaluation_mse': eval_mse}
with open(args.train_dir / 'eval.json', 'w+') as f:
json.dump(result, f)
joblib.dump(model, args.train_dir / 'model.joblib')
def evaluate(args, d, net, log=None):
print(f'Evaluating on {d.N} problems...')
eval_start_time = time()
net.eval()
prep = (get_prepare_subproblem if args.fit_subproblem else get_prepare)(args, d)
total_loss = 0
with torch.no_grad():
for idxs in np.split(range(d.N), range(args.n_batch, d.N, args.n_batch)):
loss = net(prep(idxs))
total_loss += loss.item() * len(idxs)
loss = total_loss / d.N
eval_time = time() - eval_start_time
if log is not None:
log(f'eval_loss={loss:.4f} eval_time={eval_time:.1f}s', eval_loss=loss, eval_time=eval_time)
class NetAC(ActionCallback):
def __init__(self, args, model):
super().__init__(args)
self.model = model
self.traj_probs = []
self.subproblem_cache = {}
self.x = None
self.prep = (get_prepare_subproblem if args.fit_subproblem else get_prepare)(args)
def action_order(self, p):
args = self.args
if self.x is None or args.use_count_feature:
self.x = VRFullProblem.process_node_counts(p.get_node_features(), p.ptype, use_count=args.use_count_feature)
if args.fit_subproblem:
cache = self.subproblem_cache
subps = p.get_subproblems(n_subproblems=args.n_subproblems, n_route_neighbors=args.n_route_neighbors, temperature=args.subproblem_temperature)
subps_todo = [subp for subp in set(subps) if subp not in cache]
gen_batch_size = len(subps_todo) if args.use_sklearn else args.n_batch
if len(subps_todo):
for start in range(0, len(subps_todo), gen_batch_size):
end = start + gen_batch_size
subps_batch = subps_todo[start: end]
prev_dists = np.array([subp.total_dist for subp in subps_batch])
if args.use_sklearn:
preds = self.model.predict(np.array([subp.get_features() for subp in subps_batch]))
else:
node_idxs = [subp.node_idxs for subp in subps_batch]
n_subp_nodes = np.array([len(ni) for ni in node_idxs])
offsets = np.zeros_like(n_subp_nodes)
data = Namespace(xs=self.x, offsets=offsets, node_idxs=pad_each(node_idxs), n_subp_nodes=n_subp_nodes, prev_dists=prev_dists)
with torch.no_grad():
preds = self.model(self.prep(data)).cpu().numpy()
for subp, pred in zip(subps_batch, preds):
cache[subp] = pred
preds = np.array([subp.total_dist - cache[subp] for subp in subps])
else:
data = dict(xs=self.x, ts=p.get_route_features(),
n_routes=len(p.routes), routes=pack_routes(p.routes, left_pad=1, right_pad=0),
route_neighbors=p.route_neighbors[:, :args.n_route_neighbors],
unique_masks=p.unique_mask,
)
data = Namespace((k, np.expand_dims(v, axis=0)) for k, v in data.items())
with torch.no_grad():
preds = self.model(self.prep(data)).cpu().numpy()[0]
self.traj_probs.append(preds)
if args.sample:
assert not args.sample
return np.random.choice(len(preds), size=(args.beam_width,), p=scipy.special.softmax(preds), replace=False)
return np.argsort(-preds) # preds is the improvements (higher is better)
def kwargs_fn(self):
return dict(probs=pad_each(self.traj_probs), **super().kwargs_fn())
def generate_ij(task):
(i, j), (nodes, demands, capacity, dist, init_routes, pkwargs), model, save_dir, args = task
save_path = save_dir / f'{i}{f"_{j}" if j else ""}.npz'
if save_path.exists():
print(f'Skipping {save_path} since already generated', flush=True)
return
print(f'Generating {save_path}...', flush=True)
mask = demands > 0
mask[0] = True
nodes, demands = nodes[mask], demands[mask]
not args.use_sklearn and model.eval()
start_time = time()
cb = NetAC(args, model)
if args.ptype == 'CVRPTW':
pkwargs.update(window_distance_scale=args.window_distance_scale)
save_beam_search(save_path, nodes, demands, capacity, init_routes, args, pkwargs=pkwargs, n_cpus=1,
action_fn=cb.action_fn, feedback_fn=cb.feedback_fn, kwargs_fn=cb.kwargs_fn
)
print(f'Generated {save_path} in {time() - start_time:.3f}s', flush=True)
def generate(args, d, model, step):
print(f'Generating {args.n_trajectories} trajectories each for problems {args.generate_index_start} to {args.generate_index_end}...')
save_dir = args.generate_save_dir / f'{step}' if step else args.generate_save_dir
save_dir.mkdir(parents=True, exist_ok=True)
*d, pkwargs = d
pkwargs = {k: pkwargs[k] for k in dict(CVRP=[], CVRPTW=['window', 'service_time'], VRPMPD=['is_pickup'])[args.ptype]}
tasks = [[
(i, j),
(*[x[i] for x in d], {k: v[i] for k, v in pkwargs.items()}),
model, save_dir, args
] for i in range(args.generate_index_start, args.generate_index_end) for j in range(args.n_trajectories)]
multiprocess(generate_ij, tasks, cpus=args.n_cpus if args.device == 'cpu' else 1)
parser = argparse.ArgumentParser()
parser.add_argument('dataset_dir', type=Path)
parser.add_argument('train_dir', type=Path)
parser.add_argument('--ptype', type=str, default='CVRP', choices=['CVRP', 'CVRPTW', 'VRPMPD'])
parser.add_argument('--window_distance_scale', type=float, default=0)
parser.add_argument('--data_suffix', type=str, default='')
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--fit_subproblem', action='store_true')
parser.add_argument('--fit_statistics', action='store_true')
parser.add_argument('--use_sklearn', action='store_true')
parser.add_argument('--sklearn_parameters', type=yaml.safe_load, default={})
parser.add_argument('--fc_only', action='store_true')
parser.add_argument('--augment_rotate', action='store_true')
parser.add_argument('--augment_flip', action='store_true')
parser.add_argument('--augment_perturb_node', type=float, default=0.0)
parser.add_argument('--augment_perturb_route', type=float, default=0.0)
parser.add_argument('--use_count_feature', action='store_true')
parser.add_argument('--use_prev_dist_feature', action='store_true')
parser.add_argument('--normalize_features', action='store_true')
parser.add_argument('--n_steps', type=int, default=40000)
parser.add_argument('--n_step_save', type=int, default=1000)
parser.add_argument('--lr', type=float, default=5e-3)
parser.add_argument('--n_batch', type=int, default=256)
parser.add_argument('--n_route_neighbors', type=int, default=15)
parser.add_argument('--n_layers', type=int, default=3)
parser.add_argument('--d_hidden', type=int, default=128)
parser.add_argument('--temperature', type=float, default=0.01)
parser.add_argument('--use_layer_norm', action='store_true')
parser.add_argument('--use_x_fc', action='store_true')
parser.add_argument('--gnn_module', type=str, default='GATConv')
parser.add_argument('--transformer_heads', type=int, default=None)
parser.add_argument('--loss', type=str, default=None)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--activation', type=str, default='ReLU')
parser.add_argument('--step', type=int, default=None)
parser.add_argument('--eval', action='store_true')
parser.add_argument('--eval_partition', type=str, default='val', choices=['train', 'val', 'test'])
parser.add_argument('--n_step_eval', type=int, default=1000)
parser.add_argument('--generate', action='store_true')
parser.add_argument('--save_dir', type=Path, default=None)
parser.add_argument('--save_suffix', type=str, default=None)
parser.add_argument('--generate_partition', type=str, default='val', choices=['train', 'val', 'test'])
parser.add_argument('--generate_partition_suffix', type=str, default='')
parser.add_argument('--n_step_generate', type=int, default=None)
parser.add_argument('--generate_step_zero', action='store_true')
parser.add_argument('--generate_index_start', type=int, default=0)
parser.add_argument('--generate_index_end', type=int, default=2)
parser.add_argument('--n_trajectories', type=int, default=1)
parser.add_argument('--generate_depth', type=int, default=30)
parser.add_argument('--n_subproblems', type=int, default=None)
parser.add_argument('--subproblem_temperature', type=float, default=0)
parser.add_argument('--sample', action='store_true')
parser.add_argument('--beam_width', type=int, default=None)
parser.add_argument('--improve_threshold', type=float, default=-float('inf'))
parser.add_argument('--detect_duplicate', action='store_true')
parser.add_argument('--no_cache', action='store_true')
parser.add_argument('--solver', type=str, choices=['LKH', 'HGS'], default='LKH')
parser.add_argument('--n_lkh_trials', type=int, default=None) # LKH
parser.add_argument('--time_threshold', type=int, default=None) # HGS
parser.add_argument('--n_cpus', type=int, default=None)
parser.add_argument('--init_tour', action='store_true')
def get_generate(args):
generate_name = f'generations'
if args.save_suffix or args.dataset_dir.parent.name != args.save_dir.name:
generate_name += args.save_suffix or f'_{args.save_dir.name}' # Transfer to another dataset
labels = dict(generate_partition='', beam_width='beam', generate_depth='depth', sample='sample', improve_threshold='improve', detect_duplicate='nodup', no_cache='nocache', init_tour='init', n_lkh_trials='lkh', time_threshold='hgsthres', n_subproblems='nsubp', subproblem_temperature='subptemp')
for arg_name, arg_label in labels.items():
arg_value = getattr(args, arg_name)
if arg_value != parser.get_default(arg_name):
generate_name += f'_{arg_label}{"" if isinstance(arg_value, bool) else arg_value}'
return args.train_dir / generate_name
type_map = {a.dest: a.type for a in parser._actions}
if __name__ == '__main__':
args = parser.parse_args()
args.generate_partition += args.generate_partition_suffix
args.train_dir.mkdir(parents=True, exist_ok=True)
args.model_save_dir = args.train_dir / 'models'
config = args.train_dir / 'config.yaml'
if (args.eval or args.generate):
assert config.exists()
obj = load_yaml(config)
for k, v in obj.items():
if getattr(args, k) == parser.get_default(k):
type_ = type_map[k]
setattr(args, k, type_(v) if type_ is not None else v)
print(f'Loaded args from {config}')
else:
obj = {k: v if isinstance(v, yaml_types) else str(v) for k, v in args.__dict__.items() if v != parser.get_default(k)}
if config.exists():
prev_obj = load_yaml(config)
assert sorted(prev_obj.items()) == sorted(obj.items()), f'Previous training configuration at {config} is different than current training run\'s configs. Either use the same configs or delete {config.parent}.'
else:
save_yaml(config, obj)
print(f'Saved args to {config}')
print(args, flush=True)
args.generate_save_dir = get_generate(args) if args.generate or args.n_step_generate else None
args.beam_width = args.beam_width or 1
args.n_step_generate = args.n_step_generate or np.inf
args.n_cpus = args.n_cpus or args.beam_width
if args.fit_subproblem:
args.loss = args.loss or 'Huber'
load, suffix = (load_subproblem_statistics, 'subproblem_statistics') if args.fit_statistics else (load_subproblem_data, 'subproblems')
path_eval = args.dataset_dir / f'{args.eval_partition}{args.data_suffix}_{suffix}.npz'
d_eval = load(path_eval)
print(f'Loaded evaluation data from {path_eval}. {d_eval.N} total labeled subproblems')
else:
args.loss = args.loss or 'CE'
path_eval = args.dataset_dir / f'{args.eval_partition}{args.data_suffix}.npz'
d_eval = load_data(args, path_eval)
print(f'Loaded evaluation data from {path_eval}. {d_eval.N} total subproblems with {d_eval.n_routes.sum()} total labels')
d_generate = None
if args.generate_save_dir:
d_generate = load_problems(args.save_dir / f'problems_{args.generate_partition}.npz')
print(f'Loaded {len(d_generate[0])} evaluation problem instances from {args.save_dir / f"problems_{args.generate_partition}.npz"} for generating trajectories to {args.generate_save_dir}', flush=True)
if args.eval or args.generate:
if args.use_sklearn:
import joblib
model = joblib.load(args.train_dir / 'model.joblib')
step = None
else:
model = (FCNetwork if args.fit_statistics else SubproblemNetwork if args.fit_subproblem else Network)(args, d_eval)
step = restore(args, model)
model = model.to(args.device)
if args.eval:
evaluate(args, d_eval, model, log=lambda *args, **kwargs: print(*args))
if args.generate:
assert args.solver == 'LKH' and args.n_lkh_trials or args.solver == 'HGS' and args.time_threshold
generate(args, d_generate, model, step)
else:
print(f'Saving experiment progress in {args.train_dir}')
if args.fit_subproblem:
path_train = args.dataset_dir / f'train{args.data_suffix}_{suffix}.npz'
d = load(path_train)
print(f'Loaded training data from {path_train}. {d.N} total labeled subproblems')
else:
path_train = args.dataset_dir / f'train{args.data_suffix}.npz'
d = load_data(args, path_train)
print(f'Loaded training data from {path_train}. {d.N} total problems with {d.n_routes.sum()} total labels.')
(train_sklearn if args.use_sklearn else train)(args, d, d_eval, d_generate)