You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am using Silero-VAD for voice activity detection (VAD),Most of the time I'm able to create an OrtSession and retrieve an OrtSession.Result。
Sometimes,when I call OrtSession.run() running in Java on Linux, I get a SIGSEGV
`public class SileroVadDetector {
// OnnxModel model used for speech processing
private final SileroVadOnnxModel model;
// Threshold for speech start
private final float startThreshold;
// Threshold for speech end
private final float endThreshold;
// Sampling rate
private final int samplingRate;
// Minimum number of silence samples to determine the end threshold of speech
private final float minSilenceSamples;
// Additional number of samples for speech start or end to calculate speech start or end time
private final float speechPadSamples;
// Whether in the triggered state (i.e. whether speech is being detected)
private boolean triggered;
// Temporarily stored number of speech end samples
private int tempEnd;
// Number of samples currently being processed
private int currentSample;
public SileroVadDetector(String modelPath,
float startThreshold,
float endThreshold,
int samplingRate,
int minSilenceDurationMs,
int speechPadMs) throws OrtException {
// Check if the sampling rate is 8000 or 16000, if not, throw an exception
if (samplingRate != 8000 && samplingRate != 16000) {
throw new IllegalArgumentException("does not support sampling rates other than [8000, 16000]");
}
// Initialize the parameters
this.model = new SileroVadOnnxModel(modelPath);
this.startThreshold = startThreshold;
this.endThreshold = endThreshold;
this.samplingRate = samplingRate;
this.minSilenceSamples = samplingRate * minSilenceDurationMs / 1000f;
this.speechPadSamples = samplingRate * speechPadMs / 1000f;
// Reset the state
reset();
log.info("silero-vad detector has initialized! startThreshold:{} endThreshold:{} samplingRate:{} minSilenceSamples:{} speechPadSamples:{}", startThreshold, endThreshold, samplingRate, minSilenceSamples, speechPadSamples);
}
// Method to reset the state, including the model state, trigger state, temporary end time, and current sample count
public void reset() {
model.resetStates();
triggered = false;
tempEnd = 0;
currentSample = 0;
}
// apply method for processing the audio array, returning possible speech start or end times
public Map<String, Double> apply(byte[] data, boolean returnSeconds) {
// Convert the byte array to a float array
float[] audioData = new float[data.length / 2];
for (int i = 0; i < audioData.length; i++) {
audioData[i] = ((data[i * 2] & 0xff) | (data[i * 2 + 1] << 8)) / 32767.0f;
}
// Get the length of the audio array as the window size
int windowSizeSamples = audioData.length;
// Update the current sample count
currentSample += windowSizeSamples;
// Call the model to get the prediction probability of speech
float speechProb = 0;
try {
speechProb = model.call(new float[][]{audioData}, samplingRate)[0];
} catch (OrtException e) {
throw new RuntimeException(e);
}
// If the speech probability is greater than the threshold and the temporary end time is not 0, reset the temporary end time
// This indicates that the speech duration has exceeded expectations and needs to recalculate the end time
if (speechProb >= startThreshold && tempEnd != 0) {
tempEnd = 0;
}
// If the speech probability is greater than the threshold and not in the triggered state, set to triggered state and calculate the speech start time
if (speechProb >= startThreshold && !triggered) {
triggered = true;
int speechStart = (int) (currentSample - speechPadSamples);
speechStart = Math.max(speechStart, 0);
Map<String, Double> result = new HashMap<>();
// Decide whether to return the result in seconds or sample count based on the returnSeconds parameter
if (returnSeconds) {
double speechStartSeconds = speechStart / (double) samplingRate;
double roundedSpeechStart = BigDecimal.valueOf(speechStartSeconds).setScale(1, RoundingMode.HALF_UP).doubleValue();
result.put("start", roundedSpeechStart);
} else {
result.put("start", (double) speechStart);
}
return result;
}
// If the speech probability is less than a certain threshold and in the triggered state, calculate the speech end time
if (speechProb < endThreshold && triggered) {
// Initialize or update the temporary end time
if (tempEnd == 0) {
tempEnd = currentSample;
}
// If the number of silence samples between the current sample and the temporary end time is less than the minimum silence samples, return null
// This indicates that it is not yet possible to determine whether the speech has ended
if (currentSample - tempEnd < minSilenceSamples) {
return Collections.emptyMap();
} else {
// Calculate the speech end time, reset the trigger state and temporary end time
int speechEnd = (int) (tempEnd + speechPadSamples);
tempEnd = 0;
triggered = false;
Map<String, Double> result = new HashMap<>();
if (returnSeconds) {
double speechEndSeconds = speechEnd / (double) samplingRate;
double roundedSpeechEnd = BigDecimal.valueOf(speechEndSeconds).setScale(1, RoundingMode.HALF_UP).doubleValue();
result.put("end", roundedSpeechEnd);
} else {
result.put("end", (double) speechEnd);
}
return result;
}
}
// If the above conditions are not met, return null by default
return Collections.emptyMap();
}
public void close() throws OrtException {
reset();
model.close();
}
`
`public class SileroVadOnnxModel {
// Define private variable OrtSession
private final OrtSession session;
private float[][][] h;
private float[][][] c;
// Define the last sample rate
private int lastSr = 0;
// Define the last batch size
private int lastBatchSize = 0;
// Define a list of supported sample rates
private static final List SAMPLE_RATES = Arrays.asList(8000, 16000);
// Constructor
public SileroVadOnnxModel(String modelPath) throws OrtException {
// Get the ONNX runtime environment
OrtEnvironment env = OrtEnvironment.getEnvironment();
// Create an ONNX session options object
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
// Set the InterOp thread count to 1, InterOp threads are used for parallel processing of different computation graph operations
opts.setInterOpNumThreads(1);
// Set the IntraOp thread count to 1, IntraOp threads are used for parallel processing within a single operation
opts.setIntraOpNumThreads(1);
// Add a CPU device, setting to false disables CPU execution optimization
opts.addCPU(true);
// Create an ONNX session using the environment, model path, and options
session = env.createSession(modelPath, opts);
// Reset states
resetStates();
}
/**
* Reset states
*/
void resetStates() {
h = new float[2][1][64];
c = new float[2][1][64];
lastSr = 0;
lastBatchSize = 0;
}
public void close() throws OrtException {
session.close();
}
/**
* Define inner class ValidationResult
*/
public static class ValidationResult {
public final float[][] x;
public final int sr;
// Constructor
public ValidationResult(float[][] x, int sr) {
this.x = x;
this.sr = sr;
}
}
/**
* Function to validate input data
*/
private ValidationResult validateInput(float[][] x, int sr) {
// Process the input data with dimension 1
if (x.length == 1) {
x = new float[][]{x[0]};
}
// Throw an exception when the input data dimension is greater than 2
if (x.length > 2) {
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
}
// Process the input data when the sample rate is not equal to 16000 and is a multiple of 16000
if (sr != 16000 && (sr % 16000 == 0)) {
int step = sr / 16000;
float[][] reducedX = new float[x.length][];
for (int i = 0; i < x.length; i++) {
float[] current = x[i];
float[] newArr = new float[(current.length + step - 1) / step];
for (int j = 0, index = 0; j < current.length; j += step, index++) {
newArr[index] = current[j];
}
reducedX[i] = newArr;
}
x = reducedX;
sr = 16000;
}
// If the sample rate is not in the list of supported sample rates, throw an exception
if (!SAMPLE_RATES.contains(sr)) {
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
}
// If the input audio block is too short, throw an exception
if (((float) sr) / x[0].length > 31.25) {
throw new IllegalArgumentException("Input audio is too short");
}
// Return the validated result
return new ValidationResult(x, sr);
}
/**
* Method to call the ONNX model
*/
public float[] call(float[][] x, int sr) throws OrtException {
ValidationResult result = validateInput(x, sr);
x = result.x;
sr = result.sr;
int batchSize = x.length;
if (lastBatchSize == 0 || lastSr != sr || lastBatchSize != batchSize) {
resetStates();
}
OrtEnvironment env = OrtEnvironment.getEnvironment();
OnnxTensor inputTensor = null;
OnnxTensor hTensor = null;
OnnxTensor cTensor = null;
OnnxTensor srTensor = null;
OrtSession.Result ortOutputs = null;
try {
// Create input tensors
inputTensor = OnnxTensor.createTensor(env, x);
hTensor = OnnxTensor.createTensor(env, h);
cTensor = OnnxTensor.createTensor(env, c);
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
Map<String, OnnxTensor> inputs = new HashMap<>();
inputs.put("input", inputTensor);
inputs.put("sr", srTensor);
inputs.put("h", hTensor);
inputs.put("c", cTensor);
// Call the ONNX model for calculation
ortOutputs = session.run(inputs);
// Get the output results
float[][] output = (float[][]) ortOutputs.get(0).getValue();
h = (float[][][]) ortOutputs.get(1).getValue();
c = (float[][][]) ortOutputs.get(2).getValue();
lastSr = sr;
lastBatchSize = batchSize;
return output[0];
} finally {
if (inputTensor != null) {
inputTensor.close();
}
if (hTensor != null) {
hTensor.close();
}
if (cTensor != null) {
cTensor.close();
}
if (srTensor != null) {
srTensor.close();
}
if (ortOutputs != null) {
ortOutputs.close();
}
}
}
}`
Urgency
No response
Platform
Linux
OS Version
CentOS Linux release 7.9.2009
ONNX Runtime Installation
Released Package
ONNX Runtime Version or Commit ID
1.12.1
ONNX Runtime API
Java
Architecture
X64
Execution Provider
Default CPU
Execution Provider Library Version
No response
The text was updated successfully, but these errors were encountered:
Can you build the ORT native library with debug symbols and rerun it? Without the stack trace into the native code it's hard to see what's going on. Also does it fail with a newer version? 1.12.1 is pretty old and we've fixed a bunch of bugs since then.
Describe the issue
I am using Silero-VAD for voice activity detection (VAD),Most of the time I'm able to create an OrtSession and retrieve an OrtSession.Result。
Sometimes,when I call OrtSession.run() running in Java on Linux, I get a SIGSEGV
This is my has_err_pid.log.
hs_err_pid13113.log
To reproduce
Here is my java code,use silero-vad tagV4.0。(https://github.com/snakers4/silero-vad/tree/v4.0)
`public class SileroVadDetector {
// OnnxModel model used for speech processing
private final SileroVadOnnxModel model;
// Threshold for speech start
private final float startThreshold;
// Threshold for speech end
private final float endThreshold;
// Sampling rate
private final int samplingRate;
// Minimum number of silence samples to determine the end threshold of speech
private final float minSilenceSamples;
// Additional number of samples for speech start or end to calculate speech start or end time
private final float speechPadSamples;
// Whether in the triggered state (i.e. whether speech is being detected)
private boolean triggered;
// Temporarily stored number of speech end samples
private int tempEnd;
// Number of samples currently being processed
private int currentSample;
`
`public class SileroVadOnnxModel {
// Define private variable OrtSession
private final OrtSession session;
private float[][][] h;
private float[][][] c;
// Define the last sample rate
private int lastSr = 0;
// Define the last batch size
private int lastBatchSize = 0;
// Define a list of supported sample rates
private static final List SAMPLE_RATES = Arrays.asList(8000, 16000);
}`
Urgency
No response
Platform
Linux
OS Version
CentOS Linux release 7.9.2009
ONNX Runtime Installation
Released Package
ONNX Runtime Version or Commit ID
1.12.1
ONNX Runtime API
Java
Architecture
X64
Execution Provider
Default CPU
Execution Provider Library Version
No response
The text was updated successfully, but these errors were encountered: