-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_frequency.py
79 lines (65 loc) · 2.33 KB
/
plot_frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import sqlite3
import matplotlib.pyplot as plt
from numpy import *
import numpy as np
import pandas as pd
import seaborn as sns
db_connection = sqlite3.connect('/home/mayank/Desktop/precog/youtube/big-database/youtube.db')
db = db_connection.cursor()
likeCount = []
viewCount = []
commentCount = []
favoriteCount = []
dislikeCount = []
duration = []
description = []
categoryId = []
try:
for i, row in enumerate(db.execute("SELECT \
likeCount, \
viewCount, \
commentCount, \
favoriteCount, \
dislikeCount, \
duration, \
description, \
categoryId \
FROM \
youtube_static").fetchall()):
# numerical features
likeCount.append(int(row[0])) # = row[0]
viewCount.append(int(row[1])) # = row[1]
commentCount.append(int(row[2])) # = row[2]
favoriteCount.append(int(row[3])) # = row[3]
dislikeCount.append(int(row[4])) # = row[4]
duration.append(int(row[5])) # = row[5]
description.append(row[6]) # = row[6]
categoryId.append(int(row[7])) # = row[7]
if (i+1) % 1000 == 0:
print i+1
except sqlite3.OperationalError, e:
print 'sqlite3.OperationalError:', e
#plt.hist(likeCount) #plotting the column as histogram
#plt.show()
#plt.savefig("like-frequency.png) # save as png
#plt.clf()
#cols = ['likeCount','viewCount','commentCount', 'dislikeCount']
#data = zip(likeCount,viewCount,commentCount, dislikeCount)
#df = pd.DataFrame(data, index=range(1,len(likeCount)+1), columns=cols)
#corr = df.corr(method='pearson')
#print corr
#corr= corr.round(2)
# Generate a mask for the upper triangle
#mask = np.zeros_like(corr, dtype=np.bool)
#mask[np.triu_indices_from(mask)] = True
# Set up the matplotlib figure
#ax = plt.subplots(figsize=(8,6))
#Generate a custom diverging colormap
#cmap = sns.diverging_palette(220, 20, sep=20, as_cmap=True)
#cmap = sns.diverging_palette(150, 275, s=80, l=55, n=9,center="dark",as_cmap=True) # center="dark"
# Draw the heatmap with the mask and correct aspect ratio
#sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3,square=True, linewidths=.5, cbar_kws={"shrink": .5}, ax=ax)
#xticklabels=5, yticklabels=5,
#sns.heatmap(corr, mask=mask, cmap=cmap, annot=True, fmt=".2f", linewidths=.5)
#plt.savefig('corplot.png') # save as png
#plt.show()