|
11 | 11 | <img src="media/cover.png" alt="Your image description">
|
12 | 12 | </p>
|
13 | 13 |
|
14 |
| -</br> |
15 |
| - |
16 | 14 | ## Why is this course different?
|
17 | 15 |
|
18 | 16 | *By finishing the **"LLM Twin: Building Your Production-Ready AI Replica"** free course, you will learn how to design, train, and deploy a production-ready LLM twin of yourself powered by LLMs, vector DBs, and LLMOps good practices.*
|
@@ -67,22 +65,26 @@ You will also **learn** to **leverage MLOps best practices**, such as experiment
|
67 | 65 | ### The feature pipeline
|
68 | 66 |
|
69 | 67 | - Consume messages from a queue through a [Bytewax](https://github.com/bytewax/bytewax?utm_source=github&utm_medium=decodingml&utm_campaign=2024_q1) streaming pipeline.
|
70 |
| -- Every message will be cleaned, chunked, embedded (using [Superlinked](https://github.com/superlinked/superlinked-alpha?utm_source=community&utm_medium=github&utm_campaign=oscourse), and loaded into a [Qdrant](https://qdrant.tech/?utm_source=decodingml&utm_medium=referral&utm_campaign=llm-course) vector DB in real-time. |
| 68 | +- Every message will be cleaned, chunked, embedded and loaded into a [Qdrant](https://qdrant.tech/?utm_source=decodingml&utm_medium=referral&utm_campaign=llm-course) vector DB in real-time. |
| 69 | +In the bonus series, we refactor the cleaning, chunking, and embedding logic using [Superlinked](https://rebrand.ly/superlinked-github), a specialized vector compute engine. We will also load and index the vectors to [Redis vector search](https://redis.io/solutions/vector-search/). |
71 | 70 | - ☁️ Deployed on [AWS](https://aws.amazon.com/).
|
72 | 71 |
|
73 | 72 | ### The training pipeline
|
| 73 | + |
74 | 74 | - Create a custom dataset based on your digital data.
|
75 | 75 | - Fine-tune an LLM using QLoRA.
|
76 | 76 | - Use [Comet ML's](https://www.comet.com/signup/?utm_source=decoding_ml&utm_medium=partner&utm_content=github) experiment tracker to monitor the experiments.
|
77 | 77 | - Evaluate and save the best model to [Comet's](https://www.comet.com/signup/?utm_source=decoding_ml&utm_medium=partner&utm_content=github) model registry.
|
78 | 78 | - ☁️ Deployed on [Qwak](https://www.qwak.com/lp/end-to-end-mlops/?utm_source=github&utm_medium=referral&utm_campaign=decodingml).
|
79 | 79 |
|
80 | 80 | ### The inference pipeline
|
81 |
| -- Load and quantize the fine-tuned LLM from [Comet's](https://www.comet.com/signup/?utm_source=decoding_ml&utm_medium=partner&utm_content=github) model registry. |
| 81 | + |
| 82 | +- Load the fine-tuned LLM from [Comet's](https://www.comet.com/signup/?utm_source=decoding_ml&utm_medium=partner&utm_content=github) model registry. |
82 | 83 | - Deploy it as a REST API.
|
83 |
| -- Enhance the prompts using RAG. |
| 84 | +- Enhance the prompts using advanced RAG. |
84 | 85 | - Generate content using your LLM twin.
|
85 | 86 | - Monitor the LLM using [Comet's](https://www.comet.com/signup/?framework=llm&utm_source=decoding_ml&utm_medium=partner&utm_content=github) prompt monitoring dashboard.
|
| 87 | +- In the bonus series, we refactor the advanced RAG layer to write more optimal queries using [Superlinked](https://rebrand.ly/superlinked-github). |
86 | 88 | - ☁️ Deployed on [Qwak](https://www.qwak.com/lp/end-to-end-mlops/?utm_source=github&utm_medium=referral&utm_campaign=decodingml).
|
87 | 89 |
|
88 | 90 | </br>
|
@@ -225,3 +227,15 @@ A big "Thank you 🙏" to all our contributors! This course is possible only bec
|
225 | 227 | <img src="https://contrib.rocks/image?repo=decodingml/llm-twin-course" />
|
226 | 228 | </a>
|
227 | 229 | </p>
|
| 230 | + |
| 231 | +## Sponsors |
| 232 | + |
| 233 | +<table> |
| 234 | + <tr> |
| 235 | + <td align="center"><img src="media/sponsors/comet.png" width="150" alt="Image 1"></td> |
| 236 | + <td align="center"><img src="media/sponsors/bytewax.png" width="150" alt="Image 2"></td> |
| 237 | + <td align="center"><img src="media/sponsors/qdrant.svg" width="150" alt="Image 3"></td> |
| 238 | + <td align="center"><img src="media/sponsors/qwak.png" width="150" alt="Image 4"></td> |
| 239 | + <td align="center"><img src="media/sponsors/superlinked.png" width="150" alt="Image 5"></td> |
| 240 | + </tr> |
| 241 | +</table> |
0 commit comments