-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLeeCarter.py
412 lines (285 loc) · 9.84 KB
/
LeeCarter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
# preparing the data
# data downloded from the human mortality database (refer to "sweden.txt")
def mort_rates_db(data_file):
with open(data_file) as f:
lines = f.readlines()
data = []
for line in lines:
data.append(line.split())
death_rates = {}
ln_death_rates = {}
for l in data[3:]:
death_rates[l[0]] = []
ln_death_rates[l[0]] = []
np.seterr(divide='ignore')
for l in data[3:]:
if l[2] == '.':
death_rates[l[0]].append(1)
ln_death_rates[l[0]].append(np.log(death_rates[l[0]][-1]))
else:
death_rates[l[0]].append(float(l[2]))
ln_death_rates[l[0]].append(np.log(death_rates[l[0]][-1]))
return [death_rates, ln_death_rates]
# custom data in the same format of the "Both.txt" file
def mort_rates(data_file):
with open(data_file) as f:
lines = f.readlines()
data = []
for line in lines:
data.append(line.split())
death_rates = {}
ln_death_rates = {}
for e in data[0]:
death_rates[e] = []
ln_death_rates[e]= []
np.seterr(divide='ignore')
for row in data[1:]:
for i in range(len(row)):
death_rates[data[0][i]].append(float(row[i]))
ln_death_rates[data[0][i]].append(np.log(death_rates[data[0][i]][-1]))
ln_death_rates.pop("x")
death_rates.pop("x")
return [death_rates, ln_death_rates]
# calculate ax
def cal_ax(log_mt):
n = len(log_mt[0])
a = [0] * n
m = len(log_mt)
for i in range(n):
for coh in log_mt:
a[i] += coh[i]
a[i] = a[i] / m
return a
# calculate Ax
def cal_hax(log_mt,ax):
h = []
for coh in log_mt:
h.append(coh[:])
for i in range(len(h)):
for j in range(len(h[0])):
h[i][j] = h[i][j] - ax[j]
return h
# calculating bx, kt and s1 using the svd
def cal_bx_kt_s(hax):
svd = np.linalg.svd(hax)
k = np.matrix.transpose(svd[0])[0]
s1 = svd[1][0]
bx = svd[2][0]
kt = [e * s1 for e in k]
return [bx, kt]
# the fitted lee carter model
def lee_carter(log_mt):
ax = cal_ax(log_mt)
hax = cal_hax(log_mt, ax)
par = cal_bx_kt_s(hax)
return [ax] + par
# forecasting kt parameter using random walk with drift model
def rand_walk_drift_forc(kt,n):
c = (kt[-1] - kt[0]) / (len(kt)-1)
forecast = []
for i in range(n):
forecast.append(kt[-1] + c*(i+1))
return forecast
# forecasting mortality rates
def forecast_mt(ax,bx,f_kt,start):
mt_forc = {}
year = start
years = []
for k in f_kt:
years.append(year)
mt_forc[year] = []
for i in range(len(ax)):
mt_forc[year].append(np.exp(ax[i] + bx[i]*k))
year += 1
return [mt_forc,years]
# forecat using the lee carter method
def forc_lee_carter(log_mt,start,n):
par = lee_carter(log_mt)
f_kt = rand_walk_drift_forc(par[2],n)
forecasts = forecast_mt(par[0],par[1],f_kt,start)
return forecasts
# calculating the difference vector
def diff_vect(test, forc):
diff = {}
for year in forc:
if year in test:
diff[year] = np.subtract(test[year],forc[year])
return diff
# calculate MAE error
def mae(test, forc, d):
diff = diff_vect(test, forc)
error = {}
for year in diff:
pos = d
error[year] = {}
error[year]["g"] = 0
error[year]["p"] = [0]
for i in range(len(diff[year])):
error[year]["g"] += np.absolute(diff[year][i])
if i == pos:
error[year]["p"][-1] = error[year]["p"][-1] / d
pos = pos + d
error[year]["p"].append(np.absolute(diff[year][i]))
else:
error[year]["p"][-1] += np.absolute(diff[year][i])
error[year]["g"] = error[year]["g"] / len(diff[year])
error[year]["p"][-1] = error[year]["p"][-1] / (len(diff[year]) - pos + d)
return error
# calculate RMSE error
def rmse(test, forc, d):
diff = diff_vect(test, forc)
error = {}
for year in diff:
error[year] = {}
error[year]["g"] = 0
error[year]["p"] = [0]
pos = d
for i in range(len(diff[year])):
error[year]["g"] += diff[year][i]**2
if i == pos:
error[year]["p"][-1] = np.sqrt(error[year]["p"][-1] / d)
pos = pos + d
error[year]["p"].append(diff[year][i]**2)
else:
error[year]["p"][-1] += diff[year][i]**2
error[year]["g"] = np.sqrt(error[year]["g"] / len(diff[year]))
error[year]["p"][-1] = np.sqrt(error[year]["p"][-1] / (len(diff[year]) - pos + d))
return error
# calculate MAPE error
def mape(test, forc, d):
diff = diff_vect(test, forc)
error = {}
for year in diff:
pos = d
error[year] = {}
error[year]["g"] = 0
error[year]["p"] = [0]
for i in range(len(diff[year])):
error[year]["g"] += np.absolute(100 * diff[year][i] / forc[year][i])
if i == pos:
error[year]["p"][-1] = error[year]["p"][-1] / d
pos = pos + d
error[year]["p"].append(np.absolute(100 * diff[year][i] / forc[year][i]))
else:
error[year]["p"][-1] += np.absolute(100 * diff[year][i] / forc[year][i])
error[year]["g"] = error[year]["g"] / len(diff[year])
error[year]["p"][-1] = error[year]["p"][-1] / (len(diff[year]) - pos + d)
return error
# generating a set for a given period
def gen_set(data,start_y,t):
new_data = []
years = []
for e in range(start_y,start_y+t):
new_data.append(data[e])
years.append(e)
return [new_data, years]
# remove old age
def gen_set_without_old(data,age_limit):
test = []
limit_test = {}
for year in data:
test.append([year,data[year]])
for year in test:
limit_test[int(year[0])] = year[1][:age_limit]
return limit_test
# generate the training sets for cross-validating forecasts horizon
def gen_train_set_forc_horizon(data,size,ya,yz):
train = []
for i in range(ya,yz-size+2):
train.append(gen_set(data,i,size))
return train
# generate the training sets for cross-validating data availability
def gen_train_set_data_av(data,min_size,ya,yf):
train = []
for i in range(min_size,yf-ya+1):
train.append(gen_set(data,yf-i,i))
return train
# cross validate the model in term of data availability
def cross_valid_data_av(data,ya,yf,min_size,hor,age_limit,d):
test = gen_set_without_old(data[0],age_limit)
forc_data = gen_set_without_old(data[1],age_limit)
train = gen_train_set_data_av(forc_data,min_size,ya,yf)
data_error = {
"mae": {},
"rmse": {},
"mape": {}
}
for set in train:
forc = forc_lee_carter(set[0], yf, hor)[0]
data_error["mae"][len(set[1])] = mae(test, forc, d)
data_error["rmse"][len(set[1])] = rmse(test, forc, d)
data_error["mape"][len(set[1])] = mape(test, forc, d)
return data_error
# cross validate the model in term of forecasts horizon
def cross_valid_forc_horizon(data,ya,yz,size,hor,age_limit,d):
test = gen_set_without_old(data[0],age_limit)
forc_data = gen_set_without_old(data[1],age_limit)
train = gen_train_set_forc_horizon(forc_data,size,ya,yz)
data_error = {
"mae": {},
"rmse": {},
"mape": {}
}
for set in train:
forc = forc_lee_carter(set[0], set[1][-1]+1, hor)[0]
data_error["mae"][set[1][-1]] = mae(test, forc, d)
data_error["rmse"][set[1][-1]] = rmse(test, forc, d)
data_error["mape"][set[1][-1]] = mape(test, forc, d)
return data_error
# getting tables from data_av:
def tab_data_av(models,size_min,ya,yf,hor,meth,g,p):
years = []
tab = []
for y in range(hor):
years.append(y+yf)
for i in range(size_min,yf-ya+1):
raw = [yf-i]
for y in years:
if g:
raw.append(float("{:.2f}".format(models[meth][i][y]["g"])))
else:
raw.append(float("{:.2f}".format(models[meth][i][y]["p"][p])))
tab.append(raw)
years.insert(0,"1st year")
t = np.matrix.transpose(np.array(tab))
return [years, t]
# getting tables from forc_horizon:
def tab_forc_horizon(models,size,ya,yz,meth,g,p,year):
years = []
tab = []
col = []
for y in range(ya+size-1,yz+1):
years.append(y)
for y in range(year,yz+1):
raw = []
col.append(y)
for i in years:
if y in models[meth][i]:
if g:
raw.append(float("{:.2f}".format(models[meth][i][y]["g"])))
else:
raw.append(float("{:.2f}".format(models[meth][i][y]["p"][p])))
else:
raw.append(0)
tab.append(raw)
col.insert(0,"last year")
tab.insert(0,years)
return [col, tab]
# print table
def tabl(tab):
fig = go.Figure(data=[go.Table(
header=dict(values=tab[0],
line_color='black',
fill_color='white',
align='center'),
cells=dict(values=tab[1],
line_color='black',
fill_color='white',
align='center'))
])
fig.update_layout(width=1200, height=1600)
fig.show()
return 0