-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathpolicy_hybrid.py
137 lines (116 loc) · 5.14 KB
/
policy_hybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
class HybridLinUCB():
def __init__(self):
self.alpha = 2.1 # 1 + np.sqrt(np.log(2/delta)/2)
self.r1 = 0.8
self.r0 = -20
self.d = 6 # dimension of user features = d
self.k = self.d * self.d # dimension of article features = k
self.article_features = {}
self.A0 = np.identity(self.k) # A0 : matrix to compute hybrid part, k*k
self.A0I = np.identity(self.k) # A0I: inverse of A0
self.b0 = np.zeros((self.k, 1)) # b0 : vector to compute hybrid part, k
self.Aa = {} # Aa : collection of matrix to compute disjoint part for each article a, d*d
self.AaI = {} # AaI : collection of matrix to compute disjoint part for each article a, d*d
self.Ba = {} # Ba : collection of matrix to compute hybrid part, d*k
self.BaT = {} # BaT : collection of matrix to compute hybrid part, d*k
self.ba = {} # ba : collection of vectors to compute disjoin part, d*1
self.AaIba = {}
self.AaIBa = {}
self.A0IBaTAaI = {}
# self.AaIBaA0IBaTAaI = {}
self.theta = {}
self.beta = np.zeros((self.k, 1))
self.index_all = {}
self.a_max = None
self.z = None
self.zT = None
self.xaT = None
self.xa = None
def set_articles(self, articles):
i = 0
art_len = len(articles)
self.article_features = np.zeros((art_len, 1, self.d))
self.Aa = np.zeros((art_len, self.d, self.d))
self.AaI = np.zeros((art_len, self.d, self.d))
self.Ba = np.zeros((art_len, self.d, self.k))
self.BaT = np.zeros((art_len, self.k, self.d))
self.ba = np.zeros((art_len, self.d, 1))
self.AaIba = np.zeros((art_len, self.d, 1))
self.AaIBa = np.zeros((art_len, self.d, self.k))
self.A0IBaTAaI = np.zeros((art_len, self.k, self.d))
# self.AaIBaA0IBaTAaI = np.zeros((art_len, self.d, self.d))
self.theta = np.zeros((art_len, self.d, 1))
for key in articles:
self.index_all[key] = i
self.article_features[i] = articles[key][:]
self.Aa[i] = np.identity(self.d)
self.AaI[i] = np.identity(self.d)
self.Ba[i] = np.zeros((self.d, self.k))
self.BaT[i] = np.zeros((self.k, self.d))
self.ba[i] = np.zeros((self.d, 1))
self.AaIba[i] = np.zeros((self.d, 1))
self.AaIBa[i] = np.zeros((self.d, self.k))
self.A0IBaTAaI[i] = np.zeros((self.k, self.d))
# self.AaIBaA0IBaTAaI[i] = np.zeros((self.d, self.d))
self.theta[i] = np.zeros((self.d, 1))
i += 1
def update(self, reward):
if reward == -1:
pass
elif reward == 1 or reward == 0:
if reward == 1:
r = self.r1
else:
r = self.r0
self.A0 += self.BaT[self.a_max].dot(self.AaIBa[self.a_max])
self.b0 += self.BaT[self.a_max].dot(self.AaIba[self.a_max])
self.Aa[self.a_max] += np.dot(self.xa, self.xaT)
self.AaI[self.a_max] = np.linalg.inv(self.Aa[self.a_max])
self.Ba[self.a_max] += np.dot(self.xa, self.zT)
self.BaT[self.a_max] = np.transpose(self.Ba[self.a_max])
self.ba[self.a_max] += r * self.xa
self.AaIba[self.a_max] = np.dot(self.AaI[self.a_max], self.ba[self.a_max])
self.AaIBa[self.a_max] = np.dot(self.AaI[self.a_max], self.Ba[self.a_max])
self.A0 += np.dot(self.z, self.zT) - np.dot(self.BaT[self.a_max], self.AaIBa[self.a_max])
self.b0 += r * self.z - np.dot(self.BaT[self.a_max], self.AaIba[self.a_max])
self.A0I = np.linalg.inv(self.A0)
self.A0IBaTAaI[self.a_max] = self.A0I.dot(self.BaT[self.a_max]).dot(self.AaI[self.a_max])
# self.AaIBaA0IBaTAaI[self.a_max] = np.matmul(self.AaIBa[self.a_max], self.A0IBaTAaI[self.a_max])
self.beta = np.dot(self.A0I, self.b0)
self.theta = self.AaIba - np.dot(self.AaIBa, self.beta)
else:
pass
def recommend(self, timestamp, user_features, articles):
article_len = len(articles) # 20
self.xa = np.array(user_features).reshape((self.d,1)) # (6,1)
self.xaT = np.transpose(self.xa) # (1,6)
index = [self.index_all[article] for article in articles]
article_features_tmp = self.article_features[index]
# za : feature of current user/article combination, k*1
za = np.outer(article_features_tmp.reshape(-1), self.xa).reshape((article_len,self.k,1)) # (20,36,1)
zaT = np.transpose(za, (0,2,1)) # (20,1,36)
A0Iza = np.matmul(self.A0I, za) # (20,36,1)
A0IBaTAaIxa = np.matmul(self.A0IBaTAaI[index], self.xa) # (20,36,1)
AaIxa = self.AaI[index].dot(self.xa) # (20,6,1)
AaIBaA0IBaTAaIxa = np.matmul(self.AaIBa[index], A0IBaTAaIxa) # (20,6,1)
# AaIBaA0IBaTAaIxa = np.matmul(self.AaIBaA0IBaTAaI[index], self.xa) # (20,6,1)
s = np.matmul(zaT, A0Iza - 2*A0IBaTAaIxa) + np.matmul(self.xaT, AaIxa + AaIBaA0IBaTAaIxa) # (20,1,1)
p = zaT.dot(self.beta) + np.matmul(self.xaT, self.theta[index]) + self.alpha*np.sqrt(s) # (20,1,1)
# assert (s < 0).any() == False
# assert np.isnan(np.sqrt(s)).any() == False
# print A0Iza.shape, A0IBaTAaIxa.shape, AaIxa.shape, AaIBaA0IBaTAaIxa.shape, s.shape, p.shape (for debugging)
max_index = np.argmax(p)
self.z = za[max_index]
self.zT = zaT[max_index]
art_max = index[max_index]
self.a_max = art_max # article index with largest UCB
return articles[max_index]
def set_articles(articles):
global HybridLinUCB
HybridLinUCB = HybridLinUCB()
HybridLinUCB.set_articles(articles)
def update(reward):
return HybridLinUCB.update(reward)
def recommend(timestamp, user_features, articles):
return HybridLinUCB.recommend(timestamp, user_features, articles)